Skip to main content
Log in

The rat α1,3-fucosyltransferase (rFucT-IV) gene encodes both long and short forms of the enzyme which share the same intracellular location

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Fucosyltransferase (FucT) activity has been detected on the surface of mouse germ cells and rat Sertoli cells, and has been postulated to play a role in cell-cell interactions. A recently cloned rat FucT (rFucT-IV) is expressed in the testes, and thus is a candidate for encoding the cell-surface FucT activity. This study maps the 5′-ends of several rFuc-T-IV mRNAs, and these results suggest that initiation of transcription may occur both upstream of the first ATG, as well as between the first two closely spaced, in-frame ATGs. Thus, in certain tissues, notably spleen, significant amounts of both a long and a short form of rFucT-IV would be predicted. This study also determines some basic properties of both the long and short forms of rFucT-IV, and investigates whether the use of alternative ATGs would allow FucT activity to be expressed both on the cell surface and in the Golgi. Plasmids that encode FLAG-epitope-labeled rFucT-IVs that initiate from either of the two ATGs were constructed, and rFucT-IV was expressed either in vitro using cell-free rabbit reticulocyte lysate, or after transfection in tissue culture. The results from these studies demonstrate that rFucT-IV is a glycosylated, transmembrane protein with a short cytoplasmic tail, and that either of the two ATGs in the 5′ region of the rFucT-IV gene are capable of acting as functional initiators of translation in vitro, to produce enzymatically active glycoproteins. However, no difference in the intracellular localization between the transferase containing a 48 amino acid or a 15 amino acid cytoplasmic tail was detected by immunocytochemistry, as both show the same pattern of Golgi-like staining in several different cell types, with no indication of surface expression. Thus, the additional amino-terminal 33 amino acids of the long form of rFucT-IV do not appear to influence its intracellular location in the cell types investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paulson JC, Colley KJ (1989) J Biol Chem 264: 17615-18.

    Google Scholar 

  2. Hakomori S (1983) In Handbook of Lipid Research (Hanahan DH, ed) vol. 3, pp 327-79. New York: Plenum Press.

    Google Scholar 

  3. Muramatsu T (1992) In Cell Surface Carbohydrates and Cell Development (Fukada M, ed) pp 239-56. Boca Raton, FL: CRC Press.

    Google Scholar 

  4. Ram PA, Cardullo RA, Millette CF (1989) Gamete Res 22: 321-2.

    Google Scholar 

  5. Cardullo RA, Armant DR, Millette CF (1989) Biochemistry 28: 1611-17.

    Google Scholar 

  6. Raychoudhury SS, Millette CF (1993) Mol Repr Dev 36: 195-202.

    Google Scholar 

  7. Roth S, McGuire EJ, Roseman S (1971) J Cell Biol 91: 536-47.

    Google Scholar 

  8. Balsamo J, Pratt RS, Emmerling MR, Grunwald GB, Lilien J (1986) J Cell Biochem 32: 235-41.

    Google Scholar 

  9. Paietta E, Hubbard AL, Wiernik PH, Diehl V, Stockert R (1987) Cancer Res 47: 2461-7.

    Google Scholar 

  10. Taatjes DJ, Roth J, Weinstein J, Paulson J (1988) J Biol 267: 4084-96.

    Google Scholar 

  11. Sajdel-Sulkowska EM, Smith FI, Wiederschain G, McCluer RH (1997) Glycoconjugate J 14: 249-58.

    Google Scholar 

  12. Russo RN, Shaper NL, Shaper JH (1990) J Biol Chem 265: 3324-31.

    Google Scholar 

  13. Youakim A, Hathaway HJ, Miller DJ, Gong X, Shur BD (1994) J Cell Biol 126: 1573-83.

    Google Scholar 

  14. Youakim A, Dubois DH, Shur BD (1994) Proc Nat Acad Sci 91: 10913-17.

    Google Scholar 

  15. Cameron HS, Szczepaniak D, Weston BW (1995). J Biol Chem 270: 20112-22.

    Google Scholar 

  16. Hopp TP, Pricket KS, Price V, Libby RT, March CJ, Ceretti P, Urdal DL, Conlon PJ (1988) Biotech 6: 1205-10.

    Google Scholar 

  17. Ko AI, Drager UC, Harn DA (1990) Proc Natl Acad Sci 87: 4159-63.

    Google Scholar 

  18. Wiederschain G, Koul O, McCluer RH (1993) Glycoconj J 12: S9, 442.

    Google Scholar 

  19. Kozak M (1996) Mammalian Genome 7: 563-74.

    Google Scholar 

  20. Briggs MR, Kadonaga JT, Bell SP, Tjian R (1986) Science 234: 47-52.

    Google Scholar 

  21. Rajput B, Shaper NL, Shaper JH (1996) J Biol Chem 271: 5131-42.

    Google Scholar 

  22. Potvin B, Kumar R, Howard DR, Stanley P (1990) J Biol Chem 265: 1615-22.

    Google Scholar 

  23. Goelz SE, Hession G, Goff D, Griffiths B, Tizard R, Newman B, Chi-Rosso G, Lobb R (1990) Cell 63: 1349-56.

    Google Scholar 

  24. Lowe JB, Kukowska-Latallo JF, Nair RP, Larsen RD, Marks RM, Macher BA, Kelly RJ, Ernst LR (1991) J Biol Chem 266: 17467-77.

    Google Scholar 

  25. Gersten KM, Natsuka S, Trinchera M, Petrynia B, Kelly RJ, Hiraiwa N, Jenkins NA, Gilbert DJ, Copeland NG, Lowe JB (1995) J Biol Chem 270: 25047-56.

    Google Scholar 

  26. Kozak M (1984) Nucleic Acids Res 12: 857-72.

    Google Scholar 

  27. Nilsson T, Lucocq JM, Mackay D, Warren G (1991) EMBO J 10: 3567-75.

    Google Scholar 

  28. Aoki D, Lee N, Yamaguchi N, Dubois C, Fukada MN (1992) Proc Natl Acad Sci 89: 4319-23.

    Google Scholar 

  29. Russo RN, Shaper NL, Taatjes DJ, Shaper JH (1992) J Biol Chem 267: 9241-7.

    Google Scholar 

  30. Teasdale RD, D'Agostarno G, Gleeson PA (1992) J Biol Chem 267: 4084-96.

    Google Scholar 

  31. Masibay AS, Balaji PV, Boeggeman EE, Qasba PK (1993) J Biol Chem 268: 9908-16.

    Google Scholar 

  32. Munro S (1991) EMBO J 10: 3577-88.

    Google Scholar 

  33. Colley KJ, Lee EU, Paulson JC (1992) J Biol Chem 267: 7784-93.

    Google Scholar 

  34. Wong SH, Low SH, Hong W (1992) J Cell Biol 117: 245-58.

    Google Scholar 

  35. Burke J, Pettit JM, Schachter H, Sarkar M, Gleeson PA (1992) J Biol Chem 267: 24433-40.

    Google Scholar 

  36. Tang BL, Wong SH, Low SH, Hong W (1992) J Biol Chem 267: 10122-8.

    Google Scholar 

  37. Yamaguchi N, Fukuda MN (1995) J Biol Chem 270: 12170-6.

    Google Scholar 

  38. Weisz OA, Swift AM, Machamer CE (1993) J Cell Biol 122: 1185-96.

    Google Scholar 

  39. Machamer CE (1993) Curr Opin Cell Biol 5: 602-12.

    Google Scholar 

  40. Nilsson T, Warren G (1994) Curr Opin Cell Biol 6: 517-21.

    Google Scholar 

  41. Bretsher MS, Munro S (1993) Science 261: 1280-1.

    Google Scholar 

  42. Pelham HS, Munro S (1993) Cell 75: 603-5.

    Google Scholar 

  43. Munro S (1995) Biochem Soc Trans 23: 527-30.

    Google Scholar 

  44. Lopez LC, Youakim A, Evans SC, Shur BD (1991) J Biol Chem 266: 15984-91.

    Google Scholar 

  45. Nguyen TTM, Hinton DA, Shur BD (1994) J Biol Chem 269: 28000-9.

    Google Scholar 

  46. Evans SC, Youakim A, Shur BD (1995) BioEssays 17: 261-8.

    Google Scholar 

  47. Evans S., Lopez LC, Shur BD (1993) J Cell Biol 120: 1045-57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aucoin, J.M., Koul, O., Sajdel-Sulkowska, E.M. et al. The rat α1,3-fucosyltransferase (rFucT-IV) gene encodes both long and short forms of the enzyme which share the same intracellular location. Glycoconj J 15, 671–681 (1998). https://doi.org/10.1023/A:1006984314437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006984314437

Navigation