Skip to main content
Log in

Poly ADP-ribosylation: A DNA break signal mechanism

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Recent evidence obtained with transgenic knockout mice suggests that the enzyme poly(ADP-ribose)polymerase (PARP) does not play a direct role in DNA break processing [1, 2]. Nevertheless, inactivation of the catalytic or the DNA nick-binding functions of PARP affects cellular responses to genotoxins at the level of cell survival, sister chromatid exchanges and apoptosis [2, 3]. In the present report, we conceptualize the idea that PARP is part of a DNA break signal mechanism [4, 5]. In vitro screening studies revealed the existence of a protein family containing a polymer-binding motif of about 22 amino acids. This motif is present in p53 protein as well as in MARCKS, a protein involved in the regulation of the actin cytoskeleton. Biochemical analyses showed that these sequences are directly targeted by PARP-associated polymers in vitro, and this alters several molecular functions of p53- and MARCKS protein. PARP-deficient knockout mice from transgenic mice were found to exhibit several phenotypic features compatible with altered DNA damage signaling, such as downregulation and lack of responsiveness of p53 protein to genotoxins, and morphological changes compatible with MARCKS-related cytoskeletal dysfunction. The knockout phenotype could be rescued by stable expression of the PARP gene. - We propose that PARP-associated polymers may recruit signal proteins to sites of DNA breakage and reprogram their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M, Wagner EF: Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes Dev 9: 509–520, 1997

    Google Scholar 

  2. Ménissier-de Murcia J, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Marks M, Oliver FJ, Masson M, Dierich A, LeMeur M, Walztinger C, Chambon P, de Murcia G: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci USA 94: 7303–7307, 1997

    PubMed  Google Scholar 

  3. Schreiber V, Hunting D, Trucco C, Gowans B, Grunwald D, de Murcia G, Ménissier-de Murcia J: Dominant-negative mutant of human poly(ADP-ribose)polymerase affects cell recovery, apoptosis, and sister chromatid exchange following DNA damage. Proc Natl Acad Sci USA 92: 4753–4757, 1995

    PubMed  Google Scholar 

  4. Lindahl T, Satoh MS, Poirier GG, Klungland A: Posttranslational modification of poly(ADP-ribose)polymerase induced by DNA strand breaks. Trends Biochem Sci 20: 405–411, 1995

    Google Scholar 

  5. Althaus FR: Role of poly(ADP-ribose)polymerase in base excision repair. In: J.D. Hickson (ed) Base Excision Repair of DNA Damage. Springer/Landes Bioscience, Austin TX, 1997, pp. 169–181

    Google Scholar 

  6. Althaus FR: Poly ADP-ribosylation: A histone shuttle mechanism in DNA excision repair. J Cell Sci 102: 663–670, 1992

    PubMed  Google Scholar 

  7. Mathis G, Althaus FR: Uncoupling of DNA excision repair and nucleosomal unfolding in poly (ADP-ribose)-depleted mammalian cells. Carcinogenesis 13: 135–138, 1990

    Google Scholar 

  8. Reed M, Woelker B, Wang P, Anderson MA, Tegtmeyer P: The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Natl Acad Sci USA 92: 9455–9459, 1995

    PubMed  Google Scholar 

  9. Jackson SP, Jeggo PA: DNA double-strand break repair and V(D)J recombination: Involvement of DNA-PK. Trends Biochem Sci 20: 412–415, 1995

    PubMed  Google Scholar 

  10. De Murcia G, Ménissier-de Murcia J: Poly(ADP-ribose)polymerase: A molecular nick sensor. Trends Biochem Sci 19: 172–176, 1994

    PubMed  Google Scholar 

  11. Bargonetti J, Friedman PN, Kern SE, Vogelstein B, Prives C: Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65: 1083–1091, 1991

    PubMed  Google Scholar 

  12. Niewolik D, Vojtesek B, Kovarik J: p53–derived from human tumour cell lines and containing distinct point mutations can be activated to bind its consensus target sequence. Oncogene 10: 881–890, 1995

    PubMed  Google Scholar 

  13. Malanga M, Bachmann S, Panzeter PL, Zweifel B, Althaus FR: Poly(ADP-ribose) quantification at the fentomol level in mammalian cells. Anal Biochem 228: 245–251, 1995

    PubMed  Google Scholar 

  14. Kaiser P, Auer B, Schweiger M: Inhibition of cell proliferation in Saccharomyces cerevisiae by expression of human NAD-ADPribosyltransferase requires the DNA binding domain ('zinc finger'). Mol Gen Genet 232: 231–239, 1992

    PubMed  Google Scholar 

  15. Panzeter PL, Zweifel B, Malanga M, Waser SH, Richard MC, Althaus FR: Targeting of histone tails by poly(ADP-ribose). J Biol Chem 268: 17662–17664, 1993

    PubMed  Google Scholar 

  16. Jayaraman L, Prives C: Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029, 1995

    PubMed  Google Scholar 

  17. Panzeter P, Realini C, Althaus FR: Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 31: 1379–1385, 1992

    PubMed  Google Scholar 

  18. Malanga M, Pleschke JM, Kleczowska HE, Althaus FR: Poly(ADPribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 273: 11839–11843, 1998

    PubMed  Google Scholar 

  19. Bakalkin G, Selivanova G, Yakovleva T, Kiseleva E, Kashuba E, Magnusson KP, Szekely L, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res 23: 362–369, 1995

    PubMed  Google Scholar 

  20. Aderem AA: The MARCKS brothers: A family of protein kinase C substrates. Cell 71: 713–716, 1992

    PubMed  Google Scholar 

  21. Hartwig JH, Thelen M, Rosen A, Janmey PA, Naim AC, Aderem AA: MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356: 618–622, 1992

    PubMed  Google Scholar 

  22. Shin I, Kam Y, Ha KS, Kang K, Joe CO: Inhibition of the phosphorylation of a myristoylated alanine-rich C kinase substrate by methyl methanesulfonate in cultured MH 3T3 cells. Mutat Res 351: 163–171, 1996

    PubMed  Google Scholar 

  23. Li X, Coffino P: Identification of a region of p53 that confers lability. J Biol Chem 271: 4447–4451, 1996

    PubMed  Google Scholar 

  24. Althaus FR, Richter C: ADP-ribosylation of proteins. Mol Biol Biochem Biophys 37: 1–125, 1987

    PubMed  Google Scholar 

  25. Kleczkowska HE, Althaus FR: Response of human keratinocytes to extremely low concentrations of N-methyl-N′-nitro-N-nitrosoguanidine. Mutat Res 367: 151–159, 1996

    PubMed  Google Scholar 

  26. Wesierska-Gadek J, Bugajaska-Schretter A, Cemi C: ADP-ribosylation of p53 tumor suppressor protein: Mutant but not wild-type p53 is modified. J Cell Biochem 62: 90–101, 1996

    PubMed  Google Scholar 

  27. Mendoza-Alvarez H, Alvarez-Gonzalez R: Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 268: 22575–22580, 1993

    PubMed  Google Scholar 

  28. Panzeter P L, Althaus F R: DNA strand break-mediated partitioning of poly(ADP-ribose)polymerase function. Biochemistry 33: 9600–9605, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Althaus, F.R., Kleczowska, H.E., Malanga, M. et al. Poly ADP-ribosylation: A DNA break signal mechanism. Mol Cell Biochem 193, 5–11 (1999). https://doi.org/10.1023/A:1006975002262

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006975002262

Navigation