Skip to main content
Log in

Synthesis, characterization, electrochemical behaviour and catalytic activity of manganese(II) complexes with linear and tripodal tetradentate ligands derived from Schiff bases

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

New manganese(II) complexes, [Mn(H2L)(H2O)2]Cl2· xH2O, with linear and tripodal tetradentate ligands have been synthesized and characterized by elemental analysis, molar conductance, i.r. spectra, magnetic measurements and electronic and e.s.r. spectra. The data show that the ligands are neutral and coordinate to manganese in a tetradentate manner; the other axial sites are occupied by the water molecules. Magnetic and e.s.r. data show that manganese(II) adopts a high-spin configuration in the complexes. The electrochemical behaviour of the complexes, determined by cyclic voltammetry, shows that the chelate structure, ligand geometry and electron donating effect of the ligand substituents are among the factors influencing the redox potentials of the complexes. In addition, we note that linear ligands stabilize the manganese(III) state to a greater extent than tripodal ligands and their complexes vigorously catalyse the disproportionation of hydrogen peroxide in the presence of added imidazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. Dismukes, Photochem. Photobiol., 43, 99 (1986).

    Google Scholar 

  2. M. L. Ludwig, K. A. Pettridge and W. C. Stallings, Manganese in Metabolism and Enzyme Function, Academic Press, New York, 1986, Vol. 21, p. 405.

    Google Scholar 

  3. W. F. Beyer, Jr. and I. Fridovich, Biochemistry, 24, 6460 (1985).

    Google Scholar 

  4. K. Wieghardt, Angew. Chem., 101, 1179 (1989).

    Google Scholar 

  5. G. Brudvig and R. H. Crabtree, Prog. Inorg. Chem. 37, 99 (1989).

    Google Scholar 

  6. N. Tamura, M. Ikenchi and Y. Inoue, Biochim. Biophys. Acta, 973, 281 (1989).

    Google Scholar 

  7. A. I. Vogel, Textbook of Quantitative Inorganic Analysis, Longmans, London, 1978, p. 433.

    Google Scholar 

  8. S. Djebbar-Sid, O. Benali-Baitich and J. P. Deloume, Polyhedron, 16, 2175 (1997).

    Google Scholar 

  9. W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).

    Google Scholar 

  10. M. Shakir, S. P. Varkey and P. Shahul Hameed, Polyhedron, 13, 1355 (1994).

    Google Scholar 

  11. S.-X. Liu and Y.-L. Feng, Polyhedron, 15, 4196 (1996).

    Google Scholar 

  12. M. Lalia-Kantouri and M. Hartophylles, Polyhedron, 11, 789 (1992).

    Google Scholar 

  13. M. Saidul Islam and M. Masir Uddin, Polyhedron, 12, 423 (1993).

    Google Scholar 

  14. F. Lioret, I. Castro, J. Faus, M. Julve and J. Latorre, New. J. Chem., 15, 47 (1991).

    Google Scholar 

  15. K. K. Narang and M. K. Singh, Inorg. Chim. Acta, 131, 245 (1987).

    Google Scholar 

  16. M. Shakir, O. S. M. Nasman, A. K. Mohamed and S. P. Varkey, Polyhedron, 15, 1284 (1996).

    Google Scholar 

  17. M. R. Bermejo, A. Castineiras, G. Monteagudo, M. Rey, A. Sousa, M. Watkinson, C. A. McAliffe, R. G. Pritchard and R. L. Beddoes, J. Chem. Soc., Dalton Trans., 2936 (1996).

  18. A. K. Usha and S. Chandra, Synth. React. Inorg. Met-Org. Chem., 22, 971 (1992).

    Google Scholar 

  19. D. M. Hong, H. H. Wei, L. L. Gan, G. H. Lee and Y. Wang, Polyhedron, 15, 2338 (1996).

    Google Scholar 

  20. L. Luaces, M. R. Bermejo, J. A. Garcia-Vazquez, J. Romeo and A. Sousa, Polyhedron, 15, 3722 (1996).

    Google Scholar 

  21. G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon Press, Oxford, 1987, Vols 5 and 6, pp. 11, 726, 494.

    Google Scholar 

  22. J. Csaszar, Acta Chim. Hung., 128, 255 (1991).

    Google Scholar 

  23. A. Deroche, I. Morgenstern-Badarau, M. Cesario, J. Guilhem, B. Keita, L. Nadjo and C. Houe-Levin, J. Am. Chem. Soc., 118, 4572 (1996).

    Google Scholar 

  24. R. Rajan, R. Rajaram, B. U. Nair, T. Ramasami and S. K. Mandal, J. Chem. Soc., Dalton Trans., 2019 (1996).

  25. M. McCann, R. M. T. Casey, M. Devereux, M. Curran and V. Mckee, Polyhedron, 15, 2323 (1996).

    Google Scholar 

  26. G. Batra and P. Mathur, Transition Met. Chem., 19, 161 (1994).

    Google Scholar 

  27. F. Azevedo, M. A. A. F de C. T. Carrondo, B. de Castro, M. Convery, D. Domingues, C. Freire, M. T. Duarte, K. Nielsen and I. C. Santres, Inorg. Chim. Acta, 219, 43 (1994).

    Google Scholar 

  28. F. Hio, R. L. Webb, C. Kelly, M. L. Mino, B. Woodworth and B. L. Elliott, Inorg. Chim. Acta, 234, 8 (1995).

    Google Scholar 

  29. A. J. Elliot, G. A. Lawrance and G. Wei, Polyhedron, 12, 851 (1993).

    Google Scholar 

  30. V. V. Pavlishchuk, P. E. Strizhak and K. B. Yatsimirskii, Inorg. Chim. Acta, 151, 133 (1988).

    Google Scholar 

  31. A. Arquero, M. A. Mendiola and P. Souza, Polyhedron, 15, 1662 (1996).

    Google Scholar 

  32. M. Perree-Fauvet, A. Gaudmer, J. Bonvoisin, J. J. Girerd, C. Boucly-Goester and P. Boucly, Inorg. Chem., 28, 3535 (1989).

    Google Scholar 

  33. M. Hirotso, K. Nakajima, M. Kojima and Y. Yoshikawa, Inorg. Chem., 34, 6178 (1995).

    Google Scholar 

  34. M. McCann, R. M. T. Casey, M. Devreux, M. Curran, C. Cardin and A. Todd, Polyhedron, 15, 2118 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djebbar-Sid, S., Benali-Baitich, O. & Deloume, J.P. Synthesis, characterization, electrochemical behaviour and catalytic activity of manganese(II) complexes with linear and tripodal tetradentate ligands derived from Schiff bases. Transition Metal Chemistry 23, 443–447 (1998). https://doi.org/10.1023/A:1006945006419

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006945006419

Keywords

Navigation