Skip to main content
Log in

Effect of tunicamycin on the activity and immunoreactivity of ascorbate oxidase (Cucurbita pepo medullosa) expressed in cultured green zucchini cells

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Ascorbate oxidase activity and immunoreactivity were evaluated in crude tissue extracts obtained from callus cell cultures induced by green zucchini sarcocarp and grown in the presence of tunicamycin, a powerful N-glycosylation inhibitor. Tunicamycin at 2 or 4 μg ml−1 blocked cell growth within a couple of weeks, although a sustained cell viability was observed in the same period. A significant inhibition of total protein synthesis was observed at 10 and 15 days of culture time, with a decrease of 30% and 43% respectively when cells were grown in the presence of 2 μg ml−1 tunicamycin, and of 48% and 57% respectively when the tunicamycin concentration was 4 μg ml−1. After the same culture times ascorbate oxidase specific activity assayed in crude tissue extracts showed increases of about 1.9-fold and 3.5-fold (10 days) and 1.7-fold and 3.1-fold (15 days) at 2 and 4 μg ml−1 tunicamycin, respectively. Ascorbate oxidase mRNA levels, however, did not appreciably differ between control and treated samples, measured at the same growing times. Lectin-blot, based on the use of concanavalin A, indicated a marked decrease of glycosylated proteins in tunicamycin-treated cultures. As judged by immunoblot, anti-native ascorbate oxidase antibodies scarcely recognized the enzyme expressed in tunicamycin-treated cells; on the contrary, anti-deglycosylated ascorbate oxidase antibodies were more reactive to the enzyme expressed in tunicamycin-treated cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chichiriccò G, Cerù MP, D'Alessandro A, Oratore A, Avigliano L (1989) Plant Sci 64: 61-6.

    Google Scholar 

  2. Butt VS (1980) In The Biochemistry of Plants: A Comprehensive Treatise. Metabolism and Respiration. (Davies PJ, ed) pp 85-95. New York: Academic Press.

    Google Scholar 

  3. Lin LS, Varner JE (1991) Plant Physiol 96: 159-65.

    Google Scholar 

  4. Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A, Finazzi-Agrò A (1992) J Mol Biol 224: 170-205.

    Google Scholar 

  5. D'Andrea G, Bouwstra JB, Kamerling JP, Vliegenthart JFG (1988) Glycoconjugate J 5: 151-7.

    Google Scholar 

  6. D'Andrea G, Salucci ML, Pitari G, Avigliano L (1993) Glycobiology 3: 563-5.

    Google Scholar 

  7. Esaka M, Imagi J, Suzuki K, Kubota K (1988) Plant Cell Physiol 29: 231-5.

    Google Scholar 

  8. Esaka M, Fukui H, Suzuki K, Kubota K (1989) Phytochemistry 29: 1547-9.

    Google Scholar 

  9. Cho HJ, Aimi T, Paik SY, Murook Y (1989) J Ferment Bioeng 68: 193-9.

    Google Scholar 

  10. Pitari G, Chichiriccò G, Marcozzi G, Rossi A, Maccarrone M, Avigliano L (1993) Plant Physiol Biochem 31: 593-8.

    Google Scholar 

  11. Ohkawa J, Okada N, Shinmyo A, Takano M (1989) Proc Natl Acad Sci USA 86: 1239-43.

    Google Scholar 

  12. Esaka M, Hattori T, Fusjisawa K, Sakajo S, Asahi T (1990) Eur J Biochem 191: 537-41.

    Google Scholar 

  13. D'Andrea G, Maccarrone M, Oratore A, Avigliano L, Messerschmidt A (1989) Biochem J 264: 601-4.

    Google Scholar 

  14. Elbein AD (1987) Annu Rev Biochem 56: 497-534.

    Google Scholar 

  15. Duncan DR, Widholm JM (1990) In Methods in Molecular Biology: Plant Cell and Tissue Culture. (Pollard JW, Walker JM, eds) pp 29-37. Clifton: Humana Press.

    Google Scholar 

  16. Avigliano L, Vecchini P, Sirianni P, Marcozzi G, Marchesini A, Mondovî B (1983) Mol Cell Biochem 56: 107-12.

    Google Scholar 

  17. Bradford MM (1976) Anal Biochem 72: 248-54.

    Google Scholar 

  18. Edge ASB, Faltynek CR, Hof L, Reichter LE Jr, Weber P (1981) Anal Biochem 118: 131-7.

    Google Scholar 

  19. Campbell DH, Garvey JS, Cremer NE, Sussorfd DH (1974) In Methods in Immunology. pp 189-91. Reading: Benjamin WA Inc.

  20. Logemann J, Schell J, Willmitzer L (1987) Anal Biochem 163: 16-20.

    Google Scholar 

  21. Rossi A, Messerschmidt A, Petruzzelli R, Finazzi-Agrò A (1988) Acts of the 34th Congress of the Italian Society of Biochemistry, p 131. Padua (Italy).

  22. Maccarrone R, Rossi A, D'Andrea G, Amicosante G, Avigliano L (1990) Anal Biochem 188: 101-4.

    Google Scholar 

  23. Laemmli UK (1970) Nature 227: 680-5.

    Google Scholar 

  24. Merril CR, Goldman D, Sedman SA, Ebert MH (1981) Science 211: 1437-8.

    Google Scholar 

  25. Burnette WN (1981) Anal Biochem 112: 125-203.

    Google Scholar 

  26. Young PR (1989) J Immunol Methods 121: 295-6.

    Google Scholar 

  27. Lis H, Sharon N (1993) Eur J Biochem 218: 1-27.

    Google Scholar 

  28. Mahoney WC, Duksin D (1979) J Biol Chem 254: 6572-6.

    Google Scholar 

  29. Lerouge P, Fichette-Lainé A-C, Chekkafi A, Avidgor V, Faye L (1996) Plant J 10: 713-9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitari, G., D'Andrea, G., Salucci, M.L. et al. Effect of tunicamycin on the activity and immunoreactivity of ascorbate oxidase (Cucurbita pepo medullosa) expressed in cultured green zucchini cells. Glycoconj J 15, 777–782 (1998). https://doi.org/10.1023/A:1006943412709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006943412709

Navigation