Skip to main content
Log in

Structure-function relations of heparin-mimetic sulfated xylan oligosaccharides: inhibition of Human Immunodeficiency Virus-1 infectivity in vitro

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Heparins/heparan sulfates modulate the function of proteins and cell membranes in numerous biological systems including normal and disease processes in humans. Heparin has been used for many years as an anticoagulant, and anticoagulant heparin-mimetics were developed several decades ago by chemical sulfation of non-mammalian polysaccharides, e.g., an antithrombotic sulfated xylan. This pharmaceutical, which comprises a mixture of sulfated oligoxylans, also mimics most other biological actions of natural heparins in vitro, including inhibition of the human immunodeficiency virus, but the molecular basis for these actions has been unclear. Here, numerous Components of the sulfated oligoxylan mixture were isolated and when bioassayed in the case of anti-HIV-1 infectivity revealed that a structural specificity underlines the capacity of sulfated xylan to inhibit HIV-1, rather than a non-specific mechanism. Components were isolated by chromatographic fractionation through Bio-Gel P10 in 0.5M ammonium bicarbonate. This fractionation revealed an elution range associated with apparent molecular weights of ∼22 000 to <1500 relative to standard heparin and heparan sulfates and newly prepared sulfated oligosaccharide standards. Components were characterized by metachromatic absorption spectroscopy, ultracentrifugation, GlcA analysis, and potency against HIV-1 infectivity, both in the tetrazolium cytotoxicity assay and in syncytium-forming assays, in CD4-lymphocytes. Structural specificity was indicated by the differential potencies exhibited by the Components: Highest activity (cytotoxicity) was exhibited by Components in the chromatographic region ≥∼5500 in mass (50% effective (inhibitory) concentration=0.5−0.7 μg ml−1 in the first fractionation series, and 0.1−0.5 μg ml−1 in a second series). The potency declined sharply below ∼5400 in mass, but with an exception; a second structure exhibiting relatively high potency eluted among low-mass oligosaccharides which had an average size of ∼ a nonomer. Components displayed differential potencies also against the syncytium-forming infectivity of HIV-1. The high potency against syncytium-formation was retained by Components down to a minimum size of about 4500 in mass, smaller than the ≥∼5400 required above. One in ten of the β1,4-linked xyloses in the native xylan are substituted with a monomeric α1,2 DGlcA branch. We have speculated that pharmaceutical actions of sulfated xylan might be related to structures involving the α-D linked substituents and this was examined using a space-filling model of a sulfated octaxylan and by analyses of Components for GlcA content. Understanding structure/function relations in the heparin-like actions of these agents would be of general significance for the careful examination of their potential clinical usefulness in many human processes modulated by heparins, including AIDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silbert JE (1967) J Biol Chem 242: 5146-52.

    Google Scholar 

  2. Lindahl U, Hook M, Backstrom G, Jacobsson I, Reisenfeld J, Malstrom A, Roden L, Feingold DS (1977) Fed Proceedings 36: 19-24.

    Google Scholar 

  3. Leder IG (1980) Biochem Biophys Res Commun (1980) 94: 1183-9.

    Google Scholar 

  4. Bourin M-C, Lindahl U (1993) Biochem J 289: 313-30.

    Google Scholar 

  5. Lam LH, Silbert JE, Rosenberg RD (1976) Biochem Biophys Res Commun 69: 570-7.

    Google Scholar 

  6. Rosenberg RD (1977) Fed Proceedings 36: 10-17.

    Google Scholar 

  7. Rosenberg RD, Jordan RE, Favreau LV, Lam LH (1979) Biochem Biophys Res Commun 86: 1319-24.

    Google Scholar 

  8. Oosta GA, Gardner WT, Beeler D, Rosenberg RD (1981) Proc Natl Acad Sci USA 78: 829-33.

    Google Scholar 

  9. Rosenberg RD, Bauer KA, Marcum JA (1986) Rev of Hematology 2: 351-416.

    Google Scholar 

  10. Savion N, Vlodavsky I, Fuks Z (1984) J Cell Physiol 118: 169-78.

    Google Scholar 

  11. Herbert JM (1991) Biochim Biophys Acta 1091: 432-41.

    Google Scholar 

  12. Yayon A, Klagsbrun M, Esco J, Leder P, Ornitz DM (1991) Cell 64: 841-8.

    Google Scholar 

  13. Walker A, Turnbull JE, Gallagher JT (1994) J Biol Chem 269: 931-5.

    Google Scholar 

  14. Sasaki S, Suchi T (1967) Nature 216: 1013-14.

    Google Scholar 

  15. Brenan M, Parish CR (1986) Eur J Immunol 16: 423-30.

    Google Scholar 

  16. Bradbury MG, Parish CR (1991) Immunol 72: 231-8.

    Google Scholar 

  17. Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W (1994) J Virol 68: 2135-41.

    Google Scholar 

  18. Bagasra O, Lischner HW (1988) J Infec Dis 158: 1084-7.

    Google Scholar 

  19. Baba M, Nakajima M, Schols D, Pauwels R, Balzarini J, De Clercq E (1988) Antiviral Res 9: 335-43.

    Google Scholar 

  20. Ueno R, Kuno S (1987) Lancet 1: 1379.

    Google Scholar 

  21. Baba M, Pauwels R, Balzarini J, Arnot J, Desmyter J, De Clercq E (1988) Proc Natl Acad Sci USA 85: 613-6.

    Google Scholar 

  22. Coombe DR, Harrop HA, Watton J, Mulloy B, Barrowcliffe TW, Rider CC (1995) AIDS Res and Hum Retroviruses 11: 1393-6.

    Google Scholar 

  23. Witvreuw M, Desmyter J, De Clercq E (1994) Antiviral Chem & Chemother 5: 345-59 (Review).

    Google Scholar 

  24. Lederman S, Gulick R, Chess L (1989) Immunol 143: 1149-54.

    Google Scholar 

  25. McClure MO, Moore JP, Blanc DF, Scotting P, Cook JMW, Keynes RJ, Weber JN, Davies D, Weiss RA (1992) Aids Res & Hum Retroviruses 8: 19-26.

    Google Scholar 

  26. Baba M, Schols D, Pauwels R, Nakashima H, De Clercq E (1990) J Acquired Immune Defi Dis 3: 493-9.

    Google Scholar 

  27. Zugmaier G, Lippman ME, Wellstein A (1992) J Natl Cancer Inst 84: 1716-24.

    Google Scholar 

  28. Meri S, Pangburn MK (1994) Biochem Biophys Res Comm 198: 52-9.

    Google Scholar 

  29. Koistinen V (1993) Mol Immunol 30: 113-18.

    Google Scholar 

  30. Stone AL (1985) Arch Biochem Biophys 236: 342-53.

    Google Scholar 

  31. Stscherbina D, Philipp B (1991) Acta Polym 42: 345-51 (Review).

    Google Scholar 

  32. Pienta KJ, Murphy BC, Issacs JT, Coffey DS (1992) Prostate 20: 233-41.

    Google Scholar 

  33. Caughey B, Raymond GJ (1993) J Virol 67: 643-50.

    Google Scholar 

  34. Ladogana A, Casaccia P, Ingrosso L, Cibati M, Salvatore M, Xi YG, Masullo C, Pocchiari M (1992) J Gen Virol 73: 661-5.

    Google Scholar 

  35. Baba M, De Clercq E, Schols D, Pauwels R, Snoeck R, Van Boeckel C, Vandedom G, Kraaileveld N, Hobbelen P, Ottenheim H, Den Hollander F (1990) J Infec Dis 161: 208-13.

    Google Scholar 

  36. Abrams I, Kuno S, Wong R, Jeffords K, Nash M, Molaghan JB, Gortner R, Ueno R (1989) Ann Inter Med 10: 183-8.

    Google Scholar 

  37. Pluda JM, Shay LE, Foli A, Tannenbaum S, Cohen PJ, Goldspeil BR, Adamo D, Cooper MR, Broder S, Yarchoan R (1993) J Natl Cancer Inst 85: 1585-92.

    Google Scholar 

  38. Swain SM, Parker B, Wellstein A, Lippman ME, Steakley C, DeLap R (1995) Invest New Drugs 13: 55-62.

    Google Scholar 

  39. Marshall JL, Hawkins MJ (1995) Breast Cancer Res & Treatment 36: 253-61.

    Google Scholar 

  40. Stone AL, Melton DJ (1991) Glycoconjugate J 8: 175.

    Google Scholar 

  41. Stone AL, Spitzin SV, Melton DJ (1992) Glycobiology 2: 468.

    Google Scholar 

  42. Raveux R, Gros P, Briot M(1965) Bull Soc Chim Fr 33: 2744-9.

    Google Scholar 

  43. Aspinall GO, Hirst EL, Mahomed J (1954) J Chem Soc 1734-41.

  44. Constantopoulos G, Dekaban AS, Carroll WR (1969) Anal Biochem 31: 59-70.

    Google Scholar 

  45. Stone AL, Childers LG, Bradley DF (1963) Biopolymers 1: 111-31.

    Google Scholar 

  46. Stone AL, Bradley DF (1967) Biochim Biophys Acta 148: 172-92.

    Google Scholar 

  47. Stone AL, Szu SC (1988) J Clin Microbiol 26: 719-25.

    Google Scholar 

  48. Stone AL (1981) In Chemistry and Biology of Heparin (Lunbad RL, Brown WV, Mann KG, Roberts HR, eds) pp 143-56, New York: Elsevier North Holland.

    Google Scholar 

  49. Weislow OS, Kiser R, Fine DL, Bader J, Shoemaker RH, Boyd MR (1989) J Natl Cancer Inst 81: 577-86.

    Google Scholar 

  50. Nara PL (1990) In Techniques in HIV Research, Aldovini A, Walker B, eds, pp 77-86, New York: Stockholm Press.

    Google Scholar 

  51. Avigad G (1977) J Chromatog 139: 343-7.

    Google Scholar 

  52. Lewis MS (1992) In Analytical Ultracentrifugation in Biochemistry and Polymer Science, Harding SE, Rowe AJ, Horton JC, eds, pp 126-37, London: Royal Society of Chemistry.

    Google Scholar 

  53. Zamyatnin AA (1984) An Rev Biophys Bioeng 13: 145-65.

    Google Scholar 

  54. Durchshlag H (1986) In Thermodynamic Data for Biochemistry and Biotechnology, Hinz H-J, ed, pp. 45-128, New York: Springer-Verlag.

    Google Scholar 

  55. Lasker, SE (1965) Some properties of fractionated heparin: Dissertation, ed. University Microfilms, Inc. (Ann Arbor, MI).

    Google Scholar 

  56. Jordan RE, Favreau LV, Braswell EH, Rosenberg RD (1982) J Biol Chem 257: 400-6.

    Google Scholar 

  57. Knott GD (1979) Comput Programs Biomed 10: 271-80.

    Google Scholar 

  58. Williams JW, Van Holde KF, Baldwin RL, Fujita H (1958) Chem Rev 58: 715-806.

    Google Scholar 

  59. Hoare DG, Koshland DE (1967) J Biol Chem 242: 2447-53.

    Google Scholar 

  60. Horikawa R, Tanimura T (1982) Anal Lett 15: 1629-42.

    Google Scholar 

  61. Bystricky S, Szu SC (1994) Biophys Chemistry 50: 1-7.

    Google Scholar 

  62. Stone AL (1967) Biochim Biophys Acta 148: 193-206.

    Google Scholar 

  63. Stone AL, Spitzin SV, Melton DJ (1993) Glycobiology 3: 520.

    Google Scholar 

  64. Stone AL (1964) Biopolymers 2: 315-325.

    Google Scholar 

  65. Atkins TE (1977) Fed Proceedings 36: 78-83.

    Google Scholar 

  66. Bitter T, Muir HM (1962) Anal Biochem 4: 330-4.

    Google Scholar 

  67. Barzue T, Level M, Petitou M, Lormeau J-C, Choay J, Schols D, Baba M, Pauwels R, Witvrouw M, De Clerq E (1993) J Med Chem 36: 3546-55.

    Google Scholar 

  68. Lopalco L, Ciccomascolo F, Lanza P, Zoppetti G, Caramazza I, Leoni F, Beretta A, Siccardi AG (1994) AIDS Res & Hu Retroviruses 10: 787-93.

    Google Scholar 

  69. Nara P, Garrity RR, Goudsmit J (1991) FASEB J 5: 2437-55.

    Google Scholar 

  70. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Science 271: 1116-20.

    Google Scholar 

  71. Feng Y, Broder C, Kennedy PE, Berger EA (1996) Science 272: 872-7.

    Google Scholar 

  72. Alkhatlb G, Combadiere C, Broder C, Feng Y, Kennedy PE, Murphy PM, Berger EA (1996) Science 272: 1955-8.

    Google Scholar 

  73. Hoffmann RA, Leeflang BR, deBarse MMJ, Amerling JP, Vliegenthart (1991) Carbohydr Res 221: 63-81.

    Google Scholar 

  74. Wel S, Ghosh S, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifson JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM (1995) Nature 373: 117-22.

    Google Scholar 

  75. Ho DD, Neuman AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Nature 373: 123-6.

    Google Scholar 

  76. Stone AL, Melton DJ, Horne MK (1996) Glycobiology 6: 773.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, A.L., Melton, D.J. & Lewis, M.S. Structure-function relations of heparin-mimetic sulfated xylan oligosaccharides: inhibition of Human Immunodeficiency Virus-1 infectivity in vitro. Glycoconj J 15, 697–712 (1998). https://doi.org/10.1023/A:1006940632184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006940632184

Navigation