Skip to main content
Log in

Structural changes in the oligosaccharide moiety of human IgG with aging

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

In order to elucidate the relationship between glycosylation of IgG and aging, oligosaccharide structures of human IgG purified from sera of men and women aged 18 to 73 years were investigated. Oligosaccharides were liberated quantitatively from IgG by hydrazinolysis followed by N-acetylation and were tagged with p-aminobenzoic acid ethyl ester. The oligosaccharide structures were then analyzed by HPLC in conjunction with sequential exoglycosidase digestion. All IgG samples were shown to contain a series of biantennary complex type oligosaccharides which consisted of ±Galβ1-4GlcNAcβ1-2Manα1-6(±GlcNAcβ1-4)(±Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(±Fucα1-6)GlcNAc and their mono- and di-sialo glycoforms in different ratios. In female IgG samples only, the incidence of non-galactosylated oligosaccharides with non-reducing terminal GlcNAc residues increased with aging (r>0.8), whereas that of digalactosylated oligosaccharides decreased (r<−0.8). A weaker correlation was observed between aging and the incidence of neutral and monosialo oligosaccharides in female IgG (r:0.461 and r=−0.538, respectively) and between aging and the incidence of oligosaccharides with a bisecting GlcNAc in both male and female IgG samples (r=0.566 and r=0.440, respectively). In addition, a significant change with aging in the galactosylation of IgG oligosaccharides was observed in females in their thirties, fifties, and sixties (p<0.02, p<0.01, and p<0.04, respectively). These findings may contribute to our understanding of autoimmune diseases such as rheumatoid arthritis in which glycosylation is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizuochi T, Taniguchi T, Shimizu A, Kobata A (1982) J Immunol 129: 2016-20.

    Google Scholar 

  2. Nose M, Wigzel lH (1983) Proc Natl Acad Sci USA 80: 6632-6.

    Google Scholar 

  3. Heyman B, Nose M, Weigel WO (1985) J Immunol 134: 4018-23.

    Google Scholar 

  4. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K, Takeuchi F, Nagano Y, Miyamoto T, Kobata A (1985) Nature 316: 452-7.

    Google Scholar 

  5. Parekh RB, Roitt IM, Isenberg DA, Dwek RA, Ansell BM, Rademacher TW (1988) Lancet 1: 966-9.

    Google Scholar 

  6. Tomana M, Schrohenloher RE, Koopman WJ, Alarcon GS, Paul WA (1988) Arthritis Rheum 31: 333-8.

    Google Scholar 

  7. Mizuochi T, Hamako J, Nose M, Titani K (1990) J Immunol 145: 1794-8.

    Google Scholar 

  8. Dekruyff RH, Kim YT, Siskind GW, Weksler ME (1980) J Immunol 125: 142-7.

    Google Scholar 

  9. Dietrich G, Algiman M, Sultan Y, Nydegger UE, Kazatchkine MD (1992) Blood 79: 2946-51.

    Google Scholar 

  10. Nobrega A, Haury M, Gueret R, Coutinho A, Weksler ME (1996) Scand J Immunol 44: 437-43.

    Google Scholar 

  11. Parekh RB, Roitt IM, Isenberg DW, Dwek RA, Rademacher TW (1988) J Exp Med 167: 1731-6.

    Google Scholar 

  12. Mizuochi T, Taniguchi T, Takamatsu J, Okude M, Iwanaga S, Kobata A (1982) J Biochem 92: 283-293.

    Google Scholar 

  13. Mizuochi T, Hamako J, Titani K (1987) Arch Biochem Biophys 257: 387-394.

    Google Scholar 

  14. Li YT, Li SC (1972) Methods Enzymol 28: 702-713.

    Google Scholar 

  15. Matsui T, Titani K, Mizuochi T (1992) J Biol Chem 267: 8723-31.

    Google Scholar 

  16. Mizuochi T (1993) In Methods in Molecular Biology Vol. 14: Glycoprotein analysis in biomedicine (Hounsell E, ed) pp 55-68. Totowa, New Jersey: Humana Press.

    Google Scholar 

  17. Laemmli UK (1970) Nature 227: 680-5.

    Google Scholar 

  18. Moriwaki T, Suganuma N, Furuhashi M, Kikkawa F, Tomoda Y, Boime I, Nakata M, Mizuochi T (1997) Glycoconjugate J 14: 225-9.

    Google Scholar 

  19. Ichihara K(1991) In Statistics for Bioscience, pp 1-370. Tokyo: Nankodo Press.

    Google Scholar 

  20. Rademacher TW, Williams P, Dwek RA (1994) Proc Natl Acad Sci USA 91: 6123-7.

    Google Scholar 

  21. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Nature Med 3: 237-43.

    Google Scholar 

  22. Childs RA, Drickamer K, Kawasaki T, Thiel S, Mizuochi T, Feizi T (1989) Biochem J 262: 131-8.

    Google Scholar 

  23. Axford JS, Mackenzie L, Lydyard PM, Hay FC, Isenberg DA, Roitt IM (1987) Lancet 2: 1486-8.

    Google Scholar 

  24. Furukawa K, Matsuta K, Takeuchi F, Kosuge E, Miyamoto T, Kobata A (1990) Int Immunol 2: 105-12.

    Google Scholar 

  25. Hardy RR, Hayakawa K, Shimizu M, Yamasaki K, Kishimoto T (1987) Science 236: 81-3.

    Google Scholar 

  26. Burastero SE, Casali P, Wilder RL, Notkins AL (1988) J Exp Med 168: 1979-92.

    Google Scholar 

  27. Shakib F, Stanworth DR (1976) Ann Rheum Dis 35: 263-6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shikata, K., Yasuda, T., Takeuchi, F. et al. Structural changes in the oligosaccharide moiety of human IgG with aging. Glycoconj J 15, 683–689 (1998). https://doi.org/10.1023/A:1006936431276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006936431276

Navigation