Skip to main content
Log in

Cancer Risk Estimation of Genotoxic Chemicals Based on Target Dose and a Multiplicative Model

  • Published:
Risk Analysis

Abstract

A mechanistic model and associated procedures are proposed for cancer risk assessment of genotoxic chemicals. As previously shown for ionizing radiation, a linear multiplicative model was found to be compatible with published experimental data for ethylene oxide, acrylamide, and butadiene. The validity of this model was anticipated in view of the multiplicative interaction of mutation with inherited and acquired growth-promoting conditions. Concurrent analysis led to rejection of an additive model (i.e. the model commonly applied for cancer risk assessment). A reanalysis of data for radiogenic cancer in mouse, dog and man shows that the relative risk coefficient is approximately the same (0.4 to 0.5 percent per rad) for tumours induced in the three species.

Doses in vivo, defined as the time-integrated concentrations of ultimate mutagens, expressed in millimol × kg−1 × h (mMh) are, like radiation doses given in Gy or rad, proportional to frequencies of potentially mutagenic events. The radiation dose equivalents of chemical doses are, calculated by multiplying chemical doses (in mMh) with the relative genotoxic potencies (in rad × mMh−1) determined in vitro. In this way the relative cancer incidence increments in rats and mice exposed to ethylene oxide were shown to be about 0.4 percent per rad-equivalent, in agreement with the data for radiogenic cancer.

Our analyses suggest that values of the relative risk coefficients for genotoxic chemicals are independent of species and that relative cancer risks determined in animal tests apply also to humans. If reliable animal test data are not available, cancer risks may be estimated by the relative potency. In both cases exposure dose/target dose relationships, the latter via macromolecule adducts, should be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. U.S. Environmental Protection Agency, ''Proposed Guidelines for Carcinogen Risk Assessment,'' (U.S. Environmental Protection Agency, Office of Research and Development, Report No. EPA600/P-92/003C, April, 1996).

  2. E. Fearon, and B. Vogelstein, ''A genetic model for colorectal tumorigenesis,'' Cell 61759-767 (1990).

    Article  PubMed  Google Scholar 

  3. J. J. McCormick, and V. M. Maher, ''Analysis of the multistep process of carcinogenesis using human fibroblasts,'' Risk Anal. 14257-263 (1994).

    PubMed  Google Scholar 

  4. L. Ehrenberg, E. Moustacchi, S. Osterman-Golkar, and G. Ekman, ''Dosimetry of genotoxic agents and dose-response relationships of their effects,'' Mutat.Res. 123121-182 (1983).

    PubMed  Google Scholar 

  5. M. To¨ rnqvist, J. Mowrer, S. Jensen, and L. Ehrenberg, ''Monitoring of environmental cancer initiators through hemoglobin adducts by a modified Edman degradation method,'' Anal.Biochem. 154255-266 (1986).

    PubMed  Google Scholar 

  6. M. To¨ rnqvist, ''Epoxide adducts to N-terminal valine of hemoglobin,'' in J. Everse, K. D. Vandegriff, and R. M. Winslow, eds, Methods in Enzymology 231Part B. (Academic Press, New York, 1994), pp. 650-657.

    Google Scholar 

  7. M. To¨ rnqvist, and H. Hindsø Landin, ''Hemoglobin adducts for in vivodose monitoring and cancer risk estimation,'' J.Occup.Environ.Med. 371077-1085 (1995).

    PubMed  Google Scholar 

  8. D. Potter, D. Blair, R. Davies, W. P. Watson, and A. S. Wright, ''The relationship between alkylation of hemoglobin andDNA in Fischer rats to [14C]ethylene oxide,'' Arch.Toxicol. 13(suppl), 254-257 (1989).

    Google Scholar 

  9. J. B. Storer, T. J. Mitchell, and R. J. M. Fry, ''Extrapolation of the relative risk of radiogenic neoplasms across mouse strains and to man,'' Radiat.Res. 114331-353 (1988).

    PubMed  Google Scholar 

  10. UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation(Report to the General Assembly, United Nations, New York, 1982), pp. 667-670.

    Google Scholar 

  11. D. A. Pierce, Y. Shimizu, D. L. Preston, M. Vaeth, and K. Mabuchi, ''Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950-1990,'' Radiat.Res. 1461-27 (1996).

    PubMed  Google Scholar 

  12. BEIR V, National Research Council, Committee on the Biological Effects of Ionizing Radiations, Health Effects of Exposure to Low Levels of Ionizing Radiation(National Academy Press, Washington, DC, 1990).

    Google Scholar 

  13. ICRP, 1990 Recommendations of the International Commission on Radiological Protection(ICRP Publication 60, Pergamon Press, Oxford, 1991).

    Google Scholar 

  14. M. To¨ rnqvist, and L. Ehrenberg, ''Risk assessment of urban air pollution,'' Pharmacogenetics 2297-303 (1992).

    PubMed  Google Scholar 

  15. L. Ehrenberg, and G. Scalia-Tomba, ''Mathematical models for the initiating and promotive action of carcinogens,'' in L. Hothorn, ed., Statistical Methods in Toxicology(Lecture Notes in Medical Informatics, Springer, Berlin, 1991), pp. 65-78.

    Google Scholar 

  16. L. Ehrenberg, F. Granath, and M. To¨ rnqvist, ''Macromolecule adducts as biomarkers of exposure to environmental mutagens in human populations,'' Environ.Health Perspect. (suppl. 3) 104423-428 (1996).

    PubMed  Google Scholar 

  17. B. A. Bridges, ''The three-tier approach to mutagenicity screening and the concept of radiation-equivalent dose,'' Mutat.Res. 26335-340 (1974).

    PubMed  Google Scholar 

  18. L. Ehrenberg, K. D. Hiesche, S. Osterman-Golkar, and I. Wennberg, ''Evaluation of genetic risks of alkylating agents: Tissue doses in the mouse from air contaminated with ethylene oxide,'' Mutat.Res. 2483-103 (1974).

    PubMed  Google Scholar 

  19. A. C. Andersen, and L. S. Rosenblatt, ''The effect of wholebody X-irradiation on the median lifespan of female dogs (beagles),'' Radiat.Res. 39177-200 (1969).

    PubMed  Google Scholar 

  20. W. M. Snellings, C. S. Weil, and R. R. Maronpot, ''A twoyear inhalation study of the carcinogenic potential of ethylene oxide in Fischer 344 rats,'' Toxicol.Appl.Pharmacol. 75105-117 (1984).

    PubMed  Google Scholar 

  21. D. W. Lynch, T. R. Lewis, W. J. Moorman, J. R. Burg, D. H. Groth, A. Khan, L. J. Ackerman, and B. Y. Cockrell, ''Carcinogenic and toxicologic effects of inhaled ethylene oxide and propylene oxide in F344 Rats,'' Toxicol.Appl.Pharmacol. 7669-84 (1984).

    PubMed  Google Scholar 

  22. NTP, National Toxicology Program, Toxicology and Carcinogenesis Studies of Ethylene Oxide in B6C3F1 Mice (inhalation studies)(Techn. Rep. Ser. No. 326, Research Triangle Park, NC, 1987).

    Google Scholar 

  23. K. A. Johnson, S. J. Gorzinski, K. M. Bodner, R. A. Cambell, C. H. Wolf, M. A. Friedman, and R. W. Mast, ''Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats,'' Toxicol.Appl.Pharmacol. 85154-168 (1986).

    PubMed  Google Scholar 

  24. M. A. Friedman, L. H. Dulak, and M. A. Stedham, ''A lifetime oncogenicity study in rats with acrylamide,'' Fundam.Appl.Toxicol. 2795-105 (1995).

    PubMed  Google Scholar 

  25. NTP, National Toxicology Program, Toxicology and Carcinogenesis Studies of 1,3-Butadiene in B6C3F1 Mice (inhalation studies)(Techn. Rep. Ser. No. 434, Research Triangle Park, NC, 1993).

    Google Scholar 

  26. A. Nilsen, A.-L. Magnusson, L. Ehrenberg, M. To¨ rnqvist, and F. Granath, ''Kinetic aspects of the detoxification of ethylene oxide in mouse inhalation experiments,'' ms. in preparation (1999).

  27. A. D. Tates, et al., ''Induction of hprt-mutations in splenic lymphocytes of Lewis rats exposed to ethylene oxide,'' to be published (1999).

  28. F. Granath, L. Ehrenberg, and M. To¨ rnqvist, ''Degree of alkylation of macromolecules in vivofrom variable exposure,'' Mutat.Res. 284297-306 (1992).

    PubMed  Google Scholar 

  29. D. R. Cox, ''Regression models and life-tables (with discussion),'' J.Roy.Stat.Soc. 21411-421 (1972).

    Google Scholar 

  30. P. Rydberg, A.-L. Magnusson, V. Zorcec, F. Granath, and M. To¨ rnqvist, ''Hemoglobin adducts for in vivodosimetry of butadiene metabolites,'' Chem.Biol.Interact. 101193-205 (1996).

    PubMed  Google Scholar 

  31. D. Segerba¨ ck, C. J. Calleman, J. L. Schroeder, L. G. Costa, and E. M. Faustman, ''Formation of N-7-(2-carbamoyl-2-hydroxyethyl) guanine inDNAof the mouse and the rat following intraperitoneal administration of [14C]acrylamide,'' Carcinogenesis 161161-1165 (1995).

    PubMed  Google Scholar 

  32. L. Ehrenberg, and M. To¨ rnqvist, ''The research background for risk assessment of ethylene oxide: aspects of dose,'' Mutat.Res. 33041-54 (1995).

    PubMed  Google Scholar 

  33. U.S. Environmental Protection Agency, ''Health Assessment Document for Ethylene Oxide-Final Report,'' (U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Washington, DC, 1985).

    Google Scholar 

  34. D. Hattis, A Pharmacokinetic/Mechanism-based Analysis of the Carcinogenic Risk of Ethylene Oxide(M.I.T. No. CTPID 87-1, Cambridge, MA, 1987).

    Google Scholar 

  35. D. Segerba¨ ck, C. Ro¨ nnba¨ ck, P. Bierke, F. Granath, and L. Ehrenberg, ''Comparative two-stage cancer tests of ethylene oxide, N-(2-hydroxyethyl)-N-nitrosourea and X-rays,'' Mutat.Res. 307387-393 (1994).

    PubMed  Google Scholar 

  36. A. Kolman, D. Segerba¨ ck, and S. Osterman-Golkar, ''Estimation of the cancer risk of genotoxic chemicals by the radequivalence approach,'' in H. Bartsch, K. Hemminki and I. K. O'Neill (eds.), Methods for Detecting DNA Damaging Agents in Humans: Applications in Cancer Epidemiology and Prevention(IARC Sci. Publ. No. 89, Lyon, 1988), pp. 258-264.

  37. Y. Shimizu, H. Kato, and W. J. Schull, ''Studies of the mortality of A-bomb survivors,'' Radiat.Res. 121120-141 (1990).

    PubMed  Google Scholar 

  38. S. Sasaki, ''Influence of the age of mice at exposure to radiation on life-shortening and carcinogenesis,'' J.Radiat.Res. 32(suppl 2), 73-85 (1991).

    PubMed  Google Scholar 

  39. R. L. Dedrick, and P. F. Morrison, ''Carcinogenic potency of alkylating agents in rodents and humans,'' Cancer Res. 522464-2467 (1992).

    PubMed  Google Scholar 

  40. L. S. Gold, T. H. Slone, N. B. Manley, G. B. Garfinkel, E. S. Hudes, L. Rohrbach, and B. N. Ames, ''The Carcinogenic Potency Database: Analyses of 4000 chronic animal cancer experiments published in the general literature and by the U.S. National Cancer Institute/National Toxicology Program,'' Environ.Health Perspect. 9611-15 (1991).

    PubMed  Google Scholar 

  41. M. To¨ rnqvist, ''Current research on hemoglobin adducts and cancer risks: an overview,'' in C. Travis, ed., Use of Biomarkers in Assessing Health and Environmental Impacts of Chemical Pollutants'' (Plenum Press, New York, 1993), pp. 17-30.

    Google Scholar 

  42. M. To¨ rnqvist, and A. Kautiainen, ''Adducted proteins for identification of endogenous electrophiles,'' Environ.Health Perspect. 9939-44 (1993).

    PubMed  Google Scholar 

  43. F. Burns, R. Alberg, B. Altschuler, and E. Morris, ''Approach to risk assessment for genotoxic carcinogens based on data from the mouse skin initiation-promotion model,'' Environ.Health Perspect. 50309-320 (1983).

    PubMed  Google Scholar 

  44. M. Sjo¨ gren, L. Ehrenberg, and U. Rannug, ''Relevance of different biological assays in assessing initiating and promoting properties of polycyclic aromatic hydrocarbons with respect to carcinogenic potency,'' Mutat.Res. 35897-112 (1996).

    PubMed  Google Scholar 

  45. H. Helleberg, and H. Xu, ''Comparison of mutation frequency from benzo[a]pyrene diol and -radiation in relation to their premutagenic events,'' in P. Heinio, and H. Ta¨ hti, eds, The 5th Nordic Toxicology Meeting, Abstracts (University of Tampere, Tampere, 1998) p. 185.

    Google Scholar 

  46. B. W. Day, S. Naylor, L. S. Gan, Y. Sahali, T. T. Nguyen, P. L. Skipper, J. S. Wishnok, S. Amin, and S. R. Tannenbaum, ''Molecular dosimetry of polycyclic aromatic hydrocarbon epoxides and diol epoxides via hemoglobin adducts,'' Cancer Res. 504611-4618 (1990).

    PubMed  Google Scholar 

  47. H. Helleberg, R. Westerholm, L. Ehrenberg, and M. To¨ rnqvist, ''Synthesis and characterisation of N-alkylated L-valine methylamide products from diol epoxide metabolites of fluoranthene and benzo[a]pyrene,'' Acta Chem.Scand. 52797-805 (1998).

    Google Scholar 

  48. J. H. Farmer, R. L. Kodell, D. L. Greenman, and G. W. Shaw, ''Dose and time responses models for the incidence of bladder and liver neoplasms in mice fed 2-acetylaminofluorene continuously,'' J.Environ.Pathol.Toxicol. 3(3 Special no.), 55-68 (1980).

    PubMed  Google Scholar 

  49. M. C. Poirier, and F. A. Beland, ''DNA adduct measurements and tumor incidence during chronic carcinogen exposure in rodents,'' Environ.Health Perspect. 102(suppl 6), 161-165 (1994).

    Google Scholar 

  50. S. H. Moolgavkar, and D. J. Venzon, ''Two event model for carcinogenesis: Incidence curves for childhood and adult cancer,'' Math.Biosci. 4755-77 (1979).

    Google Scholar 

  51. W. Y. Tan, Stochastic Models of Carcinogenesis(Marcel Dekker, Inc., New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granath, F.N., Vaca, C.E., Ehrenberg, L.G. et al. Cancer Risk Estimation of Genotoxic Chemicals Based on Target Dose and a Multiplicative Model. Risk Anal 19, 309–320 (1999). https://doi.org/10.1023/A:1006933913194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006933913194

Navigation