Skip to main content
Log in

Ruthenium(III)-catalyzed oxidation of substituted ethanols by sodium N-bromo-p-toluenesulfonamide in hydrochloric acid medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of substituted alcohols, RCH2CH2OH (R = H-, OEt-, OMe-, NH2-, Cl- and Br-) by sodium N-bromo-p-toluenesulfonamide or bromamine-T (BAT), catalyzed by ruthenium(III) chloride in the presence of HCl, has been studied at 303K. The reaction rate shows first order dependence each on [BAT], [alcohol] and [RuIII]. The reaction rate is inversely dependent on [H+]. Addition of halide ions and the reduction product, p-toluenesulfonamide has no significant effect on the rate. Composite activation parameters ΔH‡, ΔS‡ and ΔG‡ were computed by studying the reaction at different temperatures (298–313K). The rate decreased in D2O medium and the solvent isotope effect k′(H2O)|k′(D2O) = 1.63 and 1.68 for EtOH and BrCH2CH2OH respectively. Proton inventory studies have been made in H2O–D2O mixtures for both alcohols. The conjugate acid, TsNHBr, is assumed to be the reactive species. The rates do not correlate satisfactorily with Taft substituent constants. The protonation constant (25.3) of monobromamine-T has been evaluated. From enthalpy-entropy relationships and Exner correlations, the isokinetic temperature (β) was found to be 368 K, which is much higher than the experimental temperature, indicating that enthalpy factors control the rate. The proposed reaction mechanisms and the derived rate laws are consistant with the observed kinetic data. The rate of oxidation of alcohols RCH2CH2OH follows the order: H > Br > OEt > OMe > Cl > NH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Campbell and G. Johnson, Chem. Rev., 78, 65 (1978).

    Google Scholar 

  2. K. K. Banerji, B. Jayaram and D. S. Mahadevappa, J. Sci. Ind. Res., 46, 65 (1987).

    Google Scholar 

  3. F. F. Hardy and J. P. Johnston, J. Chem. Soc., Perkin Trans 2, 642 (1973).

    Google Scholar 

  4. F. Ruff and A. Kucsman, J. Chem. Soc., Perkin Trans 2, 1075 (1982).

    Google Scholar 

  5. Puttaswamy and D. S. Mahadevappa, Ind. J. Chem., 32A, 409 (1993).

    Google Scholar 

  6. B. M. Venkatesha, S. Ananda and D. S. Mahadevappa, Ind. J. Chem., 33A, 128 (1994).

    Google Scholar 

  7. H. Ramachandra, D. S. Mahadevappa and K. S. Rangappa, Ind. J. Chem., 36B, 333 (1997).

    Google Scholar 

  8. S. Ananda, M. B. Jagadeesha, Puttaswamy and N. M. M. Gowda, Synth. React. Inorg. Met.-Org. Chem., 27, 1093 (1997).

    Google Scholar 

  9. K. B. Wiberg, Oxidation in Organic Chemistry, Part A, Academic Press, New York, 1965, pp. 47, 142, 159, 198, 200 and 247.

    Google Scholar 

  10. W. S. Trahanovsky, Oxidation in Organic Chemistry, Part B, Academic Press, New York, 1973, pp. 35 and 197.

    Google Scholar 

  11. R. J. Andette, J. W. Quil and P. J. Smith, J. Chem. Soc. Commun., 38 (1972).

  12. R. M. E. Richards, J. Pharmacol., 21, 68 (1969); 24, 145 (1972).

    Google Scholar 

  13. (a) M. M. Natarajan and V. Thiagarajan, J. Chem. Soc. Perkin Trans 2, 1590 (1975); (b) J. Kukherjee and K. K. Banerji, J. Chem. Soc. Perkin Trans 2, 676 (1980); (c) B. Singh, A. K. Singh, N. B. Singh and B.B.L. Saxena Tetrahedron, 24, 5203 (1984).

  14. Puttaswamy and D. S. Mahadevappa, J. Phys. Org. Chem., 2, 660 (1989); Ind. J. Chem., 29A, 42 (1990).

    Google Scholar 

  15. H. Ramachandra, K. S. Rangappa and D. S. Mahadevappa, J. Phys. Org. Chem., 9, 279 (1996); Ind. J. Chem., 35B, 703 (1996).

    Google Scholar 

  16. C. G. R. Nair, R. Lalithakumari and P. Indrasenan, Talanta, 25, 525 (1978).

    Google Scholar 

  17. F. Feigl, Spot Tests in Organic Analysis, Elsevier, Amsterdam, 1975.

    Google Scholar 

  18. D. S. Mahadevappa and N. M. M. Gowda, Talanta, 22, 771 (1975).

    Google Scholar 

  19. H. H. Cady and R. E. Connick, J. Am. Chem. Soc., 80, 2646 (1958).

    Google Scholar 

  20. R. E. Connick and D. A. Fine, J. Am. Chem. Soc., 82, 4187 (1960).

    Google Scholar 

  21. J. R. Backhours, F. D. Doyer and N. Shales, Proc. Roy. Soc., 83, 146 (1950).

    Google Scholar 

  22. T. Davfokratova Analytical Chemistry of Ruthenium, Academy of Sciences, USSR, 1963, pp. 54, 71 and 97.

    Google Scholar 

  23. W. P. Griffith, The Chemistry of Rare Platinum Metals, Inter Science, New York, 1967, p. 141.

    Google Scholar 

  24. B. Singh, N. B. Singh and B. B. L. Saxena, J. Ind. Chem. Soc., 61, 319 (1984).

    Google Scholar 

  25. B. Singh, P. K. Singh and D. Singh, J. Mol Cat., 78, 207 (1980).

    Google Scholar 

  26. D. R. Pryde and F. G. Soper, J. Chem. Soc., 1510 (1931).

  27. J. C. Morris, J. A. Salazar and M. A. Wineman, J. Am. Chem. Soc., 70, 2036 (1948).

    Google Scholar 

  28. E. Bishop and V. J. Jennings, Talanta, 1, 197 (1958).

    Google Scholar 

  29. S. S. Narayanan and V. R. S. Rao, Radiochem. Acta, 32, 211 (1983).

    Google Scholar 

  30. M. Subhashini, M. Subramanian and V. R. S. Rao, Talanta, 32, 1082 (1985).

    Google Scholar 

  31. Y. K. Gupta, Private Communication, 1988.

  32. R. D. Gillium, Introduction to Physical Organic Chemistry, Addison Wiley, London, 1970, p. 264.

    Google Scholar 

  33. W. A. Pavelich and R. W. Taft, J. Am. Chem. Soc., 79, 4935 (1957).

    Google Scholar 

  34. D. S. Mahadevappa and K. Mohan, Oxid. Commun (Hungary), 8, 207 (1985/86).

    Google Scholar 

  35. D. S. Mahadevappa and S. Ananda, Indian J. Chem., 24A, 589 (1985).

    Google Scholar 

  36. C. J. Collins and N. S. Bowman, Isotope Effects in Chemical Reactions, Van Nostrand, New York, 1970, p. 267.

    Google Scholar 

  37. W. J. Albery and M. H. Davies, J. Chem. Soc., Faraday Trans., 68, 167 (1972).

    Google Scholar 

  38. G. Gopalakrishnan and J. L. Hogg, J. Org. Chem., 50, 1206 (1985).

    Google Scholar 

  39. N. S. Isaacs, Physical Organic Chemistry, Wiley, New York, 1987, p. 275.

    Google Scholar 

  40. O. Exner. Collect. Czech. Chem. Commun., 29, 1094 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, P., Ramachandrappa, R. Ruthenium(III)-catalyzed oxidation of substituted ethanols by sodium N-bromo-p-toluenesulfonamide in hydrochloric acid medium. Transition Metal Chemistry 24, 326–332 (1999). https://doi.org/10.1023/A:1006931803005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006931803005

Keywords

Navigation