Skip to main content
Log in

Analysis of thin layers and discontinuities

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A modification of the finite difference scheme for thin dielectric layers is presented and implemented into the method of lines. The thin layers may be placed between two consecutive discretisation lines, i.e. no line is inside the layer. The analysis is based on the treatment of dielectric boundaries. So, formulas for the finite difference scheme at interfaces are given, too. The expressions are tested by determining the effective index of a slab waveguide with a very thin film-layer. A comparison with the analytical solution proves the accuracy of the derived formulas. Another test was the analysis of a Bragg-grating, here only the treatment of interfaces was checked. The modified difference scheme works very well in the TE-case whereas there remain problems for the TM-polarisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Irene A. Stegun, Pocketbook of mathematical funcitons, (Verlag Harri Deutsch, Frankfurt/Main, Germany), 1984.

    Google Scholar 

  • Conradi, O., S. Helfert and R. Pregla, Opt. Quantum Electron. 30, p. 369–373, 1998.

    Google Scholar 

  • Čtyroký, J., S. Helfert and R. Pregla, Opt. Quantum Electron. 30, 343–358, 1998.

    Google Scholar 

  • Guekos, G. (Ed.) Photonic devices for telecommunications, (Springer Verlag, Heidelberg, Germany), 1998.

    Google Scholar 

  • Hadley, G.R. J. Lightwave Technol. 16(1), 134–141, 1998a.

    Google Scholar 

  • Hadley, G.R. J. Lightwave Technol. 16(1), 142–151, 1998b.

    Google Scholar 

  • Hadley, G.R. AEUÈ, 52(5), 310–316, 1998c.

    Google Scholar 

  • Helfert, S.F. and R. Pregla, J. Lightwave Technol. 14(10), 2414–2421, 1996.

    Google Scholar 

  • Helfert, S.F. and R. Pregla, J. Lightwave Technol. 16(9), 1694–1702, 1998.

    Google Scholar 

  • Hoekstra, H.J.W.M., G.J.M. Krijnen and P.V. Lambeck, J. Lightwave Technol. 10(10), 1352–1355, 1992.

    Google Scholar 

  • Kornatz, A. and R. Pregla, Proc. German National U.R.S.I Conf.: Improvement of the Convergence Be-haviour of the Method of Lines (in German), Kleinheubach, Germany, 115–118, 1993a.

    Google Scholar 

  • Kornatz, A. and R. Pregla, J. Lightwave Technol. 11(2), 249–251, 1993b.

    Google Scholar 

  • Pregla, R. and W. Pascher, Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh (Ed.): The Method of Lines, (J. Wiley Publ., New York, USA), 381–446, 1989.

    Google Scholar 

  • Pregla, R. IEEE Microw. Guid. Wave Lett. 5(2), 53–55, 1995a.

    Google Scholar 

  • Pregla, R. Methods for Modeling and Simulation of Guided-Wave Optoelectronic Devices, W.P. Huang (Ed.): MoL-BPM Method of Lines Based Beam Propagation Method, (EMW Publishing, Cambridge, Massachusetts, USA), 51–102. 1995b.

    Google Scholar 

  • Pregla, R. AEUÈ, 50(5), 293–300, 1996a.

    Google Scholar 

  • Pregla, R. J. Lightwave Technol. 14(4), 634–639, 1996b.

    Google Scholar 

  • Stoffer, R. and H.J.W.M. Hoekstra, Opt. Quantum Electron. 30, 375–383, 1998.

    Google Scholar 

  • Vassallo, C. IEE Proc.-J, 139(2), 137–142, 1992.

    Google Scholar 

  • Yamauchi, J., M. Sekiguchi, O. Uchiyama, J. Shibayama and H. Nakano, IEEE Photon. Technol. Lett. 9(7), 961–963, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helfert, S.F., Pregla, R. Analysis of thin layers and discontinuities. Optical and Quantum Electronics 31, 721–732 (1999). https://doi.org/10.1023/A:1006929303579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006929303579

Navigation