Skip to main content
Log in

A possible role of Schisto FLRFamide in inhibition of adipokinetic hormone release from locust corpora cardiaca

  • Published:
Journal of Neurocytology

Abstract

The distribution and actions of FMRFamide-related peptides (FaRPs) in the corpora cardiaca of the locust Locusta migratoria were studied. Antisera to FMRFamide and SchistoFLRFamide (PDVDHVFLRFamide) label neuronal processes that impinge on glandular cells in the glandular lobe of the corpora cardiaca known to produce adipokinetic hormones. Electron microscopic immunocytochemistry revealed that these FaRP-containing processes form synaptoid contacts with the glandular cells. Approximately 12% of the axon profiles present in the glandular part of the corpus cardiacum contained SchistoFLRFamide-immunoreactive material. Retrograde tracing of the axons in the nervus corporis cardiaci II with Lucifer yellow revealed 25–30 labelled neuronal cell bodies in each lateral part of the protocerebrum. About five of these in each hemisphere reacted with the SchistoFLRFamide-antiserum. Double-labelling immunocytochemistry showed that the FaRP-containing processes in the glandular lobe of the corpora cardiaca are distinct from neuronal processes, reacting with an antiserum to the neuropeptide locustatachykinin. The effect of the decapeptide SchistoFLRFamide and the tetrapeptide FMRFamide on the release of adipokinetic hormone I (AKH I) from the cells in the glandular part of the corpus cardiacum was studied in vitro. Neither the deca- nor the tetrapeptide had any effect on the spontaneous release of AKH I. Release of AKH I induced by the phosphodiesterase inhibitor IBMX, however, was reduced significantly by both peptides. These results point to an involvement of FaRPs as inhibitory modulators in the regulation of the release of adipokinetic hormone from the glandular cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carroll, L.S., Carrow, G.M. & Calabrese, R.L. (1986) Localization and release of FMRFamide-like immunoreactivity in the cerebral neuroendocrine system ofManduca sexta.Journal of Experimental Biology 126, 1-14.

    Google Scholar 

  • Colombaioni, L., Paupardin-Tritsch, D., Vidal, P. & Gerschenfeld, H.M. (1985) The neuropeptide FMRF-amide decreases both the Ca2+ conductance and a cyclic 3′,5′-adenosine monophosphate-dependent K1 conductance in identified molluscan neurons.Journal of Neuroscience 5, 2533-8.

    Google Scholar 

  • Cottrell, G.A. (1997). The first peptide-gated ion channel.Journal of Experimental Biology 200, 2377-86.

    Google Scholar 

  • Diederen, J.H.B., Maas, H.A., Pel, H.J., Schooneveld, H., Jansen, W.F. & Vullings, H.G.B. (1987) Co-localization of the adipokinetic hormones I and II in the same glandular cells and in the same granules of corpus cardiacum ofLocusta migratoria andSchistocerca gregaria.Cell and Tissue Research 249, 379-89.

    Google Scholar 

  • Dircksen, H. & Homberg, U. (1995) Crustacean cardioactive peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous system of the locust,Locusta migratoria.Cell and Tissue Research 279, 495-515.

    Google Scholar 

  • Duve, H., Johnsen, A.H., Sewell, J.C., Scott, A.G., Orchard, I., Rehfeld, J.F. & Thorpe, A. (1992). Isolation, structure, and activity of-Phe-Met-Arg-Phe-NH2 neuropeptides (designated calliFMRFamides) from the blowflyCalliphora vomitoria.Proceedings of the National Academy of Sciences USA 89, 2326-30.

    Google Scholar 

  • EichmÑller, S., Hammer, M. & SchÄfer, S. (1991) Neurosecretory cells in the honeybee brain and suboesophageal ganglion show FMRFamide-like immunoreactivity.Journal of Comparative Neurology 312, 164-74.

    Google Scholar 

  • Elia, A.J., Tebrugge, V.A. & Orchard, I. (1993) The pulsatile appearance of FMRFamide-related peptides in the haemolymph and loss of FMRFamide-like immunoreactivity from neurohaemal areas ofRodnius prolixus following a blood meal.Journal of Insect Physiology 39, 459-69.

    Google Scholar 

  • Fujisawa, Y., Shimoda, M., Kiguchi, K., Ichikawa, T. & Fujita, N (1993) The inhibitory effect of a neuropeptide, ManducaFLRFamide, on the midgut activity of the sphingid moth,Agrius convolvuli.Zoological Science 10, 773-77.

    Google Scholar 

  • GÄde, G. (1997) The explosion of structural information on insect neuropeptides. In:Progress in the Chemistry of Or ganic Natural Products (edited by Herz, W., Kirby, G.W., Moore, R.E., Steglich, W. & Tamm, C.), pp 1-128. Wien, New York: Springer Verlag.

    Google Scholar 

  • Holman, G.M., Cook, B.J. & Nachman, R.J. (1986) Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous contractions of the cockroach hindgut.Comparative Biochememistry and Physiology 85C, 329-33.

    Google Scholar 

  • Homberg, U., Kingan, T.G. & Hildebrand, J.G. (1990) Distribution of FMRFamide-like immunoreactivity in the brain and the suboesophageal ganglion of the sphinx mothManduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity.Cell and Tissue Research 259, 401-19.

    Google Scholar 

  • KINGAN, T.G., TEPLOW, D.B., PHILIPS, J.M., REIHM, J.P., ROA, K.R., HILDEBRAND, J.G., HOMBERG U., KAMMER, A.E., JARDINE, I., GRIFFIN, P.R. & HUNT D.F.(1990) a new peptide in the fmr famide family isolated from the cns of the hawk mothmanducasexta.peptides 11 849-56.

    Google Scholar 

  • Kobayashi, M. & Muneoka, Y. (1989) Functions, receptors and mechanisms of the FMRFamide-related peptides.Biological Bulletin 177, 206-9.

    Google Scholar 

  • Konings, P.N.M., Vullings, H.G.B., Kok, O.J.M., Diederen, J.H.B. & Jansen, W.F. (1989) The innervation of the corpus cardiacum ofLocusta migratoria: a neuroanatomical study with the use of lucifer yellow.Cell and Tissue Research 258, 301-8.

    Google Scholar 

  • Lange, A.B., Orchard, I. & Tebrugge, V.A. (1991) Evidence for the involvement of a SchistoFLRFamide-like peptide in the neutral control of locust oviduct.Journal of Comparative Physiology 168A, 383-91.

    Google Scholar 

  • Lange, A.B., Peeff, N.M. & Orchard, I. (1994) Isolation, sequence, and bioactivity of FMRFamide-related peptides from the locust ventral nerve cord.Peptides 15, 1089-94.

    Google Scholar 

  • Myers, C.M. & Evans, P.D. (1987) An FMRFamide antiserum differentiates between populations of antigens in the brain and retrocerebral complex of the locust,Schistocerca gregaria.Cell and Tissue Research 250, 93-9.

    Google Scholar 

  • Nachman, R.J., Holman, G.M., Haddon, W.F. & Hayes, T.K. (1989) Structure activity relationships for myotropic activity of the gastrin/CCK-like insect sulfakinins.Peptide Research 2, 171-7.

    Google Scholar 

  • NÄssel, D.R. (1993a) Insect myotropic peptides: differential distribution of locustatachykinin-and leucokinin-like immunoreactive neurons in the locust brain.Cell and Tissue Research 274, 27-40.

    Google Scholar 

  • NÄssel, D.R. (1993b) Neuropeptides in the insect brain: a review.Cell and Tissue Research 273, 1-29.

    Google Scholar 

  • NÄssel, D.R., Ohlsson, L.G., Johansson, K.U.I. & Grimmelikhuijzen, C.J.P. (1988) Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide.Neuroscience 27, 347-62.

    Google Scholar 

  • NÄssel, D.R., Passier, P.C.C.M., Elekes, K., Dircksen, H., Vullings, H.G.B. & Cantera, R. (1995) Evidence that locustatachykinin I is involved in release of adipokinetic hormone from locust corpora cardiaca.Regulatory Peptides 57, 297-310.

    Google Scholar 

  • NÄssel, D.R., Vullings, H.G.B., Passier, P.C.C.M., Lundquist, C.T., Schoofs, L., Diederen, J.H.B. & van der Horst, D.J. (1999) Several isoforms of locustatachykinins may be involved in cyclic AMP-mediated release of adipokinetic hormones from the locust corpora cardiaca.General and Comparative Endocrinology 113, 401-412.

    Google Scholar 

  • Orchard, I., & Loughton, B.G. (1981) The neural control of release of hyperlipaemic hormone from the corpus cardiacum ofLocusta migratoria.Comparative Biochemistry and Physiology 68A, 25-30.

    Google Scholar 

  • Passier, P.C.C.M., van der Jagt, E.M., Vullings, H.G.B. & Diederen, J.H.B. (1994) The innervation of the adipokinetic cellsrom Locusta migratoria: involvement of FMRF-amide immunopositive nerve fibres. In:Sensory Transduction (edited by Elsner, N. & Breer, H.), p 683, Stuttgart: G. Thieme Verlag.

    Google Scholar 

  • Passier, P.C.C.M., Vullings, H.G.B., Diederen, J.H.B. & van der Horst, D.J. (1995) Modulatory effects of biogenic amines on adipokinetic hormone secretion from locust corpora cardiaca in vitro.General and Comparative Endocrinology 97, 231-8.

    Google Scholar 

  • Passier, P.C.C.M., Vullings, H.G.B., Diederen, J.H.B. & van der Horst, D.J. (1997) Trehalose inhibits the release of adipokinetic hormones from the corpus cardiacum in the African migratory locust,Locusta migratoria, at the level of adipokinetic cells.Journal of Endocrinology 153, 299-305.

    Google Scholar 

  • Passier, P.C.C.M., Vullings, H.G.B., Diederen, J.H.B., Lundquist, C.T. & NÄssel, D.R. (1996) Locustatachykinins are involved in the release of the adipokinetic hormones from Locust corpus cardiacum. In:Brain and Evolution (edited by Elsner, N. & Schnitzler, H.U.), p 760. Stuttgart: G. Thieme Verlag.

    Google Scholar 

  • Peeff, N.M., Orchard, I. & Lange, A.B. (1994) Isolation, sequence and bioactivity of PDVDHVFLRFamide and ADVGHVFLRFamide peptides from the locust central nervous system.Peptides 15, 387-92.

    Google Scholar 

  • Piomelli, D., Volterra, A., Dale, N., Siegelbaum, S.A., Kandel, E.R., Schwartz, J.H. & Belardetti, F. (1987) Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition ofAplysia sensory cells.Nature 328, 38-43.

    Google Scholar 

  • Price, D.A. & Greenberg, M.J. (1977) Structure of a molluscan cardioexcitatory neuropeptide, FMRFamide,Science 197, 670-1.

    Google Scholar 

  • Price, D.A. & Greenberg, M.J. (1989) The hunting of the FaRPs: the distribution of FMRFamide-related peptides.Biological Bulletin 177, 198-205.

    Google Scholar 

  • Rademakers, L.H.P.M. (1977). Identification of a secretomotor centre in the brain ofLocusta migratoria controlling the secretory activity of the adipokinetic hormone producing cells of the corpus cardiacum.Cell and Tissue Research 184, 381-95.

    Google Scholar 

  • Robb, S., Packman, L.C. & Evans, P.D. (1989) Isolation, primary structure and bioactivity of SchistoFLRFamide, a FMRF-amide-like neuropeptide from the locust,Schistocerca gregaria.Biochemical and Biophysical Research Communications 160, 850-6.

    Google Scholar 

  • Sasaki, K., Kudo, A., Matsumoto, M., Takashima, K., Takahashi, J. & Sato, M. (1991) Regulatory roles of different G-proteins for K+-dependent and Na+, Ca2+-dependent synaptic responses in the ganglion cells ofAplysia. In:Molluscan Neurobiology (edited by Kits, K.S., Boer, H.H. & Joosse, J.), pp 117-22 Amsterdam: North Holland.

    Google Scholar 

  • Schoofs, L., Vanden Broeck, J. & de Loof, A. (1993a) The myotropic peptides ofLocusta migratoria: structures, distribution, functions and receptors.Insect Biochemistry and Molecular Biology 23, 859-81.

    Google Scholar 

  • Schoofs, L., Holman, G.M., Paemen, L., Veelaert, D., Amelinckx, M. & de Loof, A. (1993b) Isolation, identification, and synthesis of PDVDHVFLRFamide (SchistoFLRFamide) inLocusta migratoria and its association with the male accessory glands, the salivary glands, the heart, and the oviduct.Peptides 14, 409-21.

    Google Scholar 

  • Sevala, V.M., Sevala, V.L. & Loughton, B.G. (1993) FMRFamide-like activity in the female locust during vitellogenesis.Journal of Comparative Neurology 337, 286-94.

    Google Scholar 

  • Sternberger, L.A. (1979).Immunocytochemistry, 2nd ed. New York: Wiley.

    Google Scholar 

  • Veelart, D., Passier, P., Devreese, B., Vanden Broeck, J., van Beeumen J., Vullings, H.G.B., Diederen, J.H.B., Schoofs, L. & de Loof, A. (1997) Isolation and characterization of an adipokinetic hormone release-inducing factor in locusts: the crustacean cardioactive peptide.Endocrinology 138, 138-42.

    Google Scholar 

  • Walker, R.J. (1992) Neuroactive peptides with an RFamide or Famide carboxyl terminal.Comparative Biochemistry and Physiology 102C, 213-22.

    Google Scholar 

  • Wang, Z, Orchard, I. & Lange, A.B. (1994) Identification and characterization of two receptors for SchistoFLRFamide on locust oviduct.Peptides 15, 875-82.

    Google Scholar 

  • Wang, Z, Orchard, I. & Lange, A.B. (1995a) Binding affinity and physiological activity of some HVFLRFamide analogues on the oviducts of the locust,Locusta migratoria.Regulatory Peptides 57, 339-46.

    Google Scholar 

  • Wang, Z, Orchard, I. Lange, A.B. & Chen, X. (1986) Mode of action of an inhibitory neuropeptide SchistoFLRFamide on the locust oviduct visceral muscle.Neuropeptides 28, 147-55.

    Google Scholar 

  • Wang, Z, Orchard, I. Lange, A.B. & Chen, X. (1995c) Binding and activation regions of the decapeptide PDVDHVFLRFamie (SchistoFLRFamide).Neuropeptides 28, 261-66.

    Google Scholar 

  • White, K., Hurteau, T. & Punsal, P. (1986) Neuropeptide-FMRFamide-like immunoreactivity inDrosophila: development and distribution.Journal of Comparative Neurology 247, 430-8.

    Google Scholar 

  • Yanauri, M., Nakashima, M., Yamado, S. & Shiono, S. (1993) Characterization of slow postsynaptic K+ current of Aplysia LUQ neurons in culture.Brain Research 629, 88-94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. NÄSSEL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vullings, H.G.B., Ten Voorde, S.E.C.G., Passier, P.C.C.M. et al. A possible role of Schisto FLRFamide in inhibition of adipokinetic hormone release from locust corpora cardiaca. J Neurocytol 27, 901–913 (1998). https://doi.org/10.1023/A:1006901123566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006901123566

Navigation