Skip to main content
Log in

Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: Down-regulation of the expression of creatine transporter isoforms in skeletal muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise.

The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hunter A: Monographs on biochemistry: Creatine and creatinine. Longmans, Green and Co., 1928

  2. Walker JB: Creatine: Biosynthesis, regulation and function. In: Advances in Enzymology and related areas of Molecular Biology, Vol. 50. John Wiley and Sons, 1979, pp 177–241

    Google Scholar 

  3. Maughan RJ: Creatine supplementation and exercise performance. Int J Sport Nut 5: 94–101, 1995

    Google Scholar 

  4. Fitch CD, Shields RP, Payne WF, Dacus JM: Creatine metabolism in skeletal muscle. Specificity of the creatine entry process. J Biol Chem 243: 2024–2027, 1968

    Google Scholar 

  5. Borsook H, Dubnoff JW: The hydrolysis of phosphocreatine and the origin of urinary creatinine. J Biol Chem 168: 493–510, 1947

    Google Scholar 

  6. Fitch CD, Shields RP: Creatine metabolism in skeletal muscle. Creatine movement across muscle membranes. J Biol Chem 241: 3611–3614, 1966

    Google Scholar 

  7. Harris RC, Viru M, Greenhaff PL, Hultman E: The effect of oral creatine supplementation on running performance during maximal short term exercise in man. J Physiol 467: 74P, 1993

    Google Scholar 

  8. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM: Significance of intracellular compartmentation, structure and function of creatine kinase isoenzymes for cellular energy homeostasis: ‘The Phospho-Creatine Circuit’. Biochem J 281: 21–40, 1992

    Google Scholar 

  9. Wyss M, Smeitnik J, Wevers RA, Wallimann T: Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochim Biophys Acta 1102: 119–166, 1992

    Google Scholar 

  10. Daly MM, Seifter S: Uptake of creatine by cultured cells. Arch Biochem Biophys 203: 317–324, 1980

    Google Scholar 

  11. Ku CP, Passow H: Creatine and creatinine transport in old and young human red blood cells. Biochim Biophys Acta 600: 212–227, 1980

    Google Scholar 

  12. Lolke JD, Somes M, Silverstein SC: Creatine uptake, metabolism, and efflux in human monocytes and macrophages. Am J Physiol 251: C128–C135, 1986

    Google Scholar 

  13. Möller A, Hamprecht B: Creatine transport in cultured cells of rat and mouse brain. J Neurochem 52: 544–550, 1989

    Google Scholar 

  14. Mayser W, Schloss P, Betz H: Primary structure and functional expression of a choline transporter expressed in the rat nervous system. FEBS Lett 305: 31–36, 1992

    Google Scholar 

  15. Gulmbal C, Kilimann MW: A Na+-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. J Biol Chem 268: 8418–8421, 1993

    Google Scholar 

  16. Nash SR, Giros B, Kingsmore SF, Rochelle JM, Suter ST, Gregor P, Seldin MF, Caron MG: Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Recep Channels 2: 165–174, 1994

    Google Scholar 

  17. Schloss P, Mayser W, Betz H: The putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues. Biochem Biophys Res Comm 198: 637–645, 1994

    Google Scholar 

  18. Schloss P, Püschel AW, Betz H: Neurotransmitter transporters: New members of known families. Curr Op Cell Biol 6: 595–599, 1994

    Google Scholar 

  19. Sora I, Richman J, Santoro G, Wei H, Wang Y, Vanderah T, Horvath R, Nguyen M, Waite S, Roeske WR, Yamamura HI: The cloning and expression of a human creatine transporter. Biochem Biophys Res Commun 204: 419–427, 1994

    Google Scholar 

  20. Saltarelli MD, Bauman AL, Moore KR, Bradley CC, Blakely RD: Expression of the rat brain creatine transporter in situ and in transfected HeLa cells. Develop Neurosci 18: 524–534, 1996

    Google Scholar 

  21. Wallimann T, Hemmer W: Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem 133/134: 193–220, 1994

    Google Scholar 

  22. Gregor P, Nash SR, Caron MG, Seldin MF, Warren ST: Assignment of the creatine transporter gene (SLC6A8) to human chromosome Xq28 telomeric to G6PD. Genomics 25: 332–333, 1995

    Google Scholar 

  23. Iyer GS, Krahe R, Goodwin LA, Doggett NA, Siciliano MJ, Funanage VL, Proujansky R: Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the linked locus to Xq28. Genomics 34: 143–146, 1996

    Google Scholar 

  24. Emery AK: X-linked muscular dystrophy with early contractures and cardiomyopathy (Emery-Dreifuss type). Clin Gen 32: 360–367, 1987

    Google Scholar 

  25. Conzalez GG, Thomas NS, Stayton NS, Knight SJ, Johnson M, Hopkins LC, Harper PS, Elsas LJ, Warren ST: Assignment of Emery-Dreifuss muscular dystrophy to the distal region of Xq28: The results of a collaborative study. Am J Hum Genet 48: 468–480, 1991

    Google Scholar 

  26. Ades LC, Gedeon AK, Wilson MJ, Latham M, Partington MW, Mulley JC, Nelson J, Lui K, Sillence DO: Barth syndrome: Clinical features and confirmation of gene localization to distal Xq28. Am J Med Genet 45: 327–334, 1993

    Google Scholar 

  27. Bolhuis PA, Hensels GW, Hulsebos TJM, Baas F, Barth PG: Mapping of the locus for X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth syndrome) to Xq28. Am J Hum Genet 48: 481–485, 1991

    Google Scholar 

  28. Gedeon AK, Wilson MJ, Colley AC, Sillence DO, Mulley JC: X-linked fatal infantile cardiomyopathy maps to Xq28 and is possibly allelic to Barth Syndrome. J Med Genet 32: 383–388, 1995

    Google Scholar 

  29. Thomas NST, Williams H, Cole G, Roberts K, Clarke A, Liechti-Gallati S, Braga S, Gerber A, Meier C, Moser H, Harper PS: X-linked neonatal centronuclear/myotubular myopathy: Evidence for linkage to Xq28 DNA marker loci. J Med Genet 27: 284–287, 1990

    Google Scholar 

  30. Loike JD, Zalutsky DL, Kaback E, Miranda AF, Silverstein SC: Extracellular creatine regulates creatine transport in rat and human muscle cells. Proc Natl Acad Sci USA 85: 807–811, 1988

    Google Scholar 

  31. Harris RC, Söderlund K, Hultman E: Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci 83: 367–374, 1992

    Google Scholar 

  32. Gulmbal C, Kilimann MW: A creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/Noradrenaline transporter family. J Mol Biol 241: 317–324, 1994

    Google Scholar 

  33. Delanghe J, De Slypere JP, De Buyzere M, Robbrecht J, Wieme R, Vermeulen A: Normal reference values for creatine, creatinine, and carnitine are lower in vegetarians. Clin Chem 35: 1802–1803, 1989

    Google Scholar 

  34. Balsom PD, Söderlund K, Ekblom B: Creatine in humans with special reference to creatine supplementation. Sports Med 18: 268–280, 1994

    Google Scholar 

  35. Guerrero ML, Beron J, Spindler B, Groscurth P, Wallimann T, Verrey F: Metabolic support of Na+-pump in apically permeabilized A6 kidney cell epithelia: Role of creatine kinase. Am J Physiol 272: C697–C706, 1997

    Google Scholar 

  36. Walker JB: Metabolic control of creatine biosynthesis. I. Effect of dietary creatine. J Biol Chem 235: 2357–2361, 1960

    Google Scholar 

  37. Odoom JE, Kemp GJ, Radda GK: The regulation of total creatine content in a myoblast cell line. Mol Cell Biochem 158: 179–188, 1996

    Google Scholar 

  38. Balsom PD, Ekblom B, Söderlund K, Sjödin B, Hultman E: Creatine supplementation and dynamic high-intensity intermittent exercise. Scand J Med Sci Sports 3: 143–149, 1993

    Google Scholar 

  39. Birch R, Noble D, Greenhaff PL: The influence of dietary creatine supplementation on performance during repeated bouts of maximal isokinetic cycling in man. J Appl Physiol 69: 268–270, 1994

    Google Scholar 

  40. Earnest CP, Snell PG, Rodriguez R, Almada AL: The effect of creatine monohydrate ingestion on anaerobic power indices, muscular strength and body composition. Acta Physiol Scand 153: 207–209, 1995

    Google Scholar 

  41. Greenhaff PL, Casey A, Short AH, Harris R, Söderlund K, Hultman E: Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci 84: 565–571, 1993

    Google Scholar 

  42. Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PL: Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am Physiol Soc 271: E31–E37, 1996

    Google Scholar 

  43. Koszalka TR, Andrew CL: Effect of insulin on the uptake of creatine-1-14C by skeletal muscle in normal and X-irradiated rats. Proc Soc Exp Biol Med 139: 1265–1271, 1972

    Google Scholar 

  44. Haughland RB, Chang DT: Insulin effect on creatine transport in skeletal muscle. Proc Soc Exp Biol Med 148: 1–4, 1975

    Google Scholar 

  45. Green AL, Hultman E, Macdonald IA, Sewell DA, Greenhaff PL: Carbohydrate ingestion augments skeletal muscle creatine accumulation during creatine supplementation in man. Am J Physiol 271: E821–E826, 1996

    Google Scholar 

  46. Clausen T, Flatman JA: The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle. J Physiol 270: 383–414, 1977

    Google Scholar 

  47. Clausen T: Regulation of active Na+-K+ transport in skeletal muscle. Physiol Rev 66: 542–580, 1986

    Google Scholar 

  48. Vandenberghe K, Gillis N, Van Leemputte M, Van Hecke P, Vanstapel F, Hespel P: Caffeine counteracts the ergogenic action of muscle creatine loading. J Appl Physiol 80: 452–457, 1996

    Google Scholar 

  49. Söderlund K, Balsom PD, Ekblom B: Creatine supplementation and high intensity exercise: Influence on performance and muscle metabolism. Clin Sci 87(suppl): 120–121, 1994

    Google Scholar 

  50. Greenhaff PL: Kreatin: Seine Rolle in Bezug auf die körperliche Leistungsfähigkeit sowie Ermüdung; seine Anwendung als ein Sporternäahrungs-Supplement. In: F Browns, S Stromme, C Wenk, C Williams (eds). Insider, News on Sport Nutrition, Isostar Sport Nutrition Foundation 3: 1–4, 1995

  51. Dawson B, Cutler M, Moody A, Lawrence S, Goodman C, Randall N: Effects of oral creatine loading on single and repeated maximal short sprints. Aus J Sci Med Sport 27: 56–61, 1995

    Google Scholar 

  52. Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL: Muscle creatine loading in men. J Appl Physiol 81: 232–237, 1996

    Google Scholar 

  53. Brönnimann M: Spitzenleistungenohne “sauer” zu werden? Move 6: 5–6, 1995

    Google Scholar 

  54. O'Gorman E, Beutner G, Wallimann T, Brdiczka D: Differential effects of creatine depletion on the regulation of enzyme activities and on creatine-stimulated mitochondrial respiration in skeletal muscle, heart, and brain. Biochim Biophys Acta 1276: 161–170, 1996

    Google Scholar 

  55. Chanutin A: The fate of creatine when administered to man. J Biol Chem 67: 29–37, 1926

    Google Scholar 

  56. Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS: Velocity of the CK reaction decreases in postischemic myocardium: A 31P-NMR magnetization transfer study of the isolated ferret heart. Circ Res 63: 1–15, 1988

    Google Scholar 

  57. Whittingham TS, Lipton P: Cerebral synaptic transmission during anoxia is protected by creatine. J Neurochem 37: 1618–1621, 1981

    Google Scholar 

  58. Carter AJ, Müller RE, Pschom U, Stransky W: Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J Neurochem 64: 2691–2699, 1995

    Google Scholar 

  59. Stöckler S, Holzbach U, Hanefeld F, Marquardt I, Helms G, Requart M, Hänicke W, Frahm J: Creatine deficiency in the brain: A new, treatable inborn error of metabolism. Pediatric Res 36: 409–413, 1994

    Google Scholar 

  60. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS: Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res 78: 893–902, 1996

    Google Scholar 

  61. Ciafaloni E, Ricci E, Shanske S: MELAS: Clinical features, biochemistry, and molecular genetics. Ann Neurol 31: 391–398, 1992

    Google Scholar 

  62. Hagenfeldt L, von Döbeln U, Solders G, Kaijser L: Creatine treatment in MELAS. Muscle Nerve 17: 1236, 1994

    Google Scholar 

  63. Stadhouders AM, Jap PHK, Winkler HP, Eppenberger HM, Wallimann T: Mitochondrial creatine kinase: A major constituent of pathological inclusions seen in mitochondrial myopathies. Proc Natl Acad Sci USA 91: 5089–5093, 1994

    Google Scholar 

  64. Eppenberger-Eberhardt M, Riesinger I, Messerli M, Schwarb P, Müller M, Eppenberger HM, Wallimann T: Adult rat cardiomyocytes cultured in creatine-deficient medium display large mitochondria with paracrystalline inclusions, enriched for creatine kinase. J Cell Biol 113: 289–302, 1991

    Google Scholar 

  65. Sipilä I, Simell O, Rapola J, Sainio K, Tuuteri L: Gyrate atrophy of the choroid and retina with hyperornithonemia: Tubular aggregates and type 2 fiber atrophy in muscle. Neurology 29: 996–1005, 1979

    Google Scholar 

  66. Sipilä I, Valle D, Brusilow S: Low guanidinoacetic acid and creatine concentrations in gyrate atrophy of the choroid and retina (GA). In: PP DeDeyn, B Marescau, V Stalon, A Qureshi (eds). Guanidino Compounds in Biology and Medicine, Vol. John Libbey and Company Ltd., 1992, pp 379–383

  67. Trijbels JMF, Sengers RCA, Bakkeren JAJM, De Kort AFM, Deutman AF: L-ornithine-ketoacid transaminase deficiency in cultured fibroblasts of a patient with hyperomithinemia and gyrate atrophy of the choroid and retina. Clin Chim Acta 79: 371–377, 1977

    Google Scholar 

  68. Shih VE, Berson EL, Mandell R, Schmidt SY: Ornithine ketoacid transaminase deficiency in gyrate atrophy of the choroid and retina. Am J Hum Genet 30: 174–179, 1978

    Google Scholar 

  69. Sipilä I, Simell O, Arjomaa P: Gyrate atrophy of the chorid and retina with hyperomithinemia. J Clin Invest 66: 684–687, 1980

    Google Scholar 

  70. Sipilä I, Rapola J, Simell O, Vannas A: Supplementary creatine as a treatment for gyrate atrophy of the choroid and retina. New Engl J Med 304: 867–870, 1981

    Google Scholar 

  71. Bigge T: Mein Selbstversuch mit Kreatin-Monohydrat. Deutscher Muskelreport 3: 23–25, 1996

    Google Scholar 

  72. Kass I, Lipton P: Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol 332: 459–472, 1982

    Google Scholar 

  73. Conway MA, Clark JF: Biochemical basis for a therapeutic role of creatine and creatine phosphate. In: Creatine and Creatine Phosphate: Scientific and Clinical Perspectives. Harcourt Brace and Company, Publishers, London, 1996, pp 91–123

    Google Scholar 

  74. Schneider WJ, Slaughter J, Goldstein JL, Anderson RGW, Capra JD, Brown MS: Use of antipeptide antibodies to demonstrate external orientation of the NH2-terminus of the low density lipoprotein receptor in the plasma membrane of fibroblasts. J Biol Chem 97: 1635–1640, 1983

    Google Scholar 

  75. Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Google Scholar 

  76. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970

    Google Scholar 

  77. Schneppenheim R, Budde U, Dahlmann N, Rautenberg P: Luminography–a new, highly sensitive visualization method for electrophoresis. Electrophoresis 12: 367–372, 1991

    Google Scholar 

  78. Rowley GL, Greenleaf AL, Kenyon GL: On the specificity of creatine kinase. New glycocyamines and glycocyamine analogs related to creatine. J Am Chem Soc 93: 5542–5551, 1971

    Google Scholar 

  79. Gonzalez AM, Uhl GR: ‘Choline/orphan V8-2-1/creatine transporter’ mRNA is expressed in nervous, renal and gastrointestinal systems. Mol Brain Res 23: 266–270, 1994

    Google Scholar 

  80. Barnwell LF, Chaudhuri G, Townsel JG: Cloning and sequencing of a cDNA encoding a novel member of the human brain GABA/noradrenaline neurotransmitter transporter family. Gene 159: 287–288, 1995

    Google Scholar 

  81. Garber AT, Winkfein RJ, Dixon GH: A novel creatine kinase cDNA whose transcript shows enhanced testicular expression. Biochim Biophys Acta 1087: 256–258, 1990

    Google Scholar 

  82. Saudrais C, Garber AT, McKay DJ, Dixon GH, Loir M: Creatine kinase in trout male germ cells–purification, gene expression, and localization in the testis. Mol Reprod Dev 44: 433–442, 1996

    Google Scholar 

  83. Kaldis P, Kamp G, Piendl T, Wallimann T: Functions of creatine kinase isoenzymes in spermatozoa. Adv Devel Biochem 5: 275–312, 1997

    Google Scholar 

  84. Wyss M, Wallimann T: Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 133/134: 51–66, 1994

    Google Scholar 

  85. O'Gorman E, Fuchs KH, Tittmann P, Gross H, Wallimann T: Crystalline mitochondrial inclusion bodies isolated from creatine depleted rat soleus muscle. J Cell Sci 110: 1403–1411, 1997

    Google Scholar 

  86. O'Gorman E, Piendl T, Müller M, Brdiczka D, Wallimann T: Mitochondrial intermembrane inclusion bodies: The common denominator between human mitochondrial myopathies and creatine depletion, due to impairment of cellular energetics. Mol Cell Biochem 174: 283–289, 1997

    Google Scholar 

  87. Wallimann T: Einnahme von Kreatin als moegliche Hilfstherapie fuer Patienten mit verschiedenen neuromuskulaeren Erkrankungen. Mitteilungsblatt der Schweizerischen Gesellschaft fuer Muskelkranke 41: 6–9, 1997

    Google Scholar 

  88. Broennimann M, Wallimann T: Kreatin: Durchbruch in der Behandlung neuromuskulaerer Krankheiten. Mitteilungsblatt der Schweizerischen Gesellschaft fuer Muskelkranke 41: 3–11, 1997

    Google Scholar 

  89. Hanefeld F, Hobbiebrunken E: Kreatin zur Verbesserung von Kraft und Ausdauer bei Muskelkranken. Deutscher Muskelreport 4: 10–11, 1996

    Google Scholar 

  90. Kekelidze TN, Hermes R, Goodwyn D, Blakely RD, Saltarelli MD: Analysis of creatine transporter expression in rat brain and cell lines using specific polyclonal antisera. Soc Neurosci 23 (Abstr.): 586.15, 1997

    Google Scholar 

  91. Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, Kaddurah-Daouk R, Beal MF: Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease. J Neurosci 18: 156–163, 1998

    Google Scholar 

  92. Wilken B, Ramirez JM, Hanefeld F, Richter DW: Supplementary creatine enhances hypoxic augmentation in vivo by preventing ATP depletion. Soc Neurosci 23 (Abstr.): 171.23, 1997

    Google Scholar 

  93. Holtzman D, Meyers R, O'Gorman E, Khait I, Wallimann T, Alfred E, Jensen F: In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog. Am J Physiol 272: C1567–C1577, 1997

    Google Scholar 

  94. O'Gorman E, Beutner G, Dolder M, Koretsky A, Bridczka D, Wallimann T: The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett 414: 253–257, 1997

    Google Scholar 

  95. Greenhaff PL: The nutritional biochemistry of creatine. Nutr Biochem 8: 610–618, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lourdes Guerrero-Ontiveros, M., Wallimann, T. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: Down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol Cell Biochem 184, 427–437 (1998). https://doi.org/10.1023/A:1006895414925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006895414925

Navigation