Skip to main content
Log in

Protein kinase CK2 interacts with a multi-protein binding domain of p53

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

p53 is one of the most powerful negative regulators of growth. To manage this in an efficient way it has to interact with a set of different cellular proteins. Most contacts with the cellular environment occur in the N- or the C-terminal domain of the protein. Since we previously found that p53 binds to the regulatory β-subunit of CK2 we now analyzed N- and C-terminal domains of p53 separately for the binding of protein kinase CK2, an enzyme which seems to have a certain importance for proliferation processes. With different overlay assays we could map the binding domain of protein kinase CK2 to a sequence between amino acids 325-344, a region which coincides with the interaction domain of some other p53 binding proteins. We also found that the regulatory β-subunit of protein kinase CK2 binds independent of the catalytic α-subunit to this C-terminal domain of p53.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Götz C, Montenarh M: p53: DNA-damage, DNA repair and apoptosis. Rev Physiol Biochem Pharmacol 127: 65–95, 1995

    Google Scholar 

  2. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAFI, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993

    PubMed  Google Scholar 

  3. Okamoto K, Beach D: Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13: 4816–4822, 1994

    PubMed  Google Scholar 

  4. Carrier F, Smith ML, Bae 1, Kilpatrick KE, Lansing TJ, Chen C-Y, Engelstein M, Friend SH, Henner WD, Gilmer TM, Kastan MB, Fornace AJ: Characterization of human Gadd45, a p53-regulated protein. J Biol Chem 269: 32672–32677, 1994

    PubMed  Google Scholar 

  5. Smith ML, Chen I-T, Zhan Q, Bae I, Chen C-Y, Gilmer TM, Kastan MB, O'Connor PM, Fornace AJ: Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science 266: 1376–1380, 1994

    PubMed  Google Scholar 

  6. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC: Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805, 1994

    PubMed  Google Scholar 

  7. Bertherat J: Insulin-like growth factor binding protein 3 (IGFBP-3): A novel target of the tumor suppressor p53 inhibiting cell growth. Eur J Endocrinol 134: 426–427, 1996

    PubMed  Google Scholar 

  8. Leng P, Brown DR, Shivakumar CV, Deb S, Deb SP: N-terminal 130 amino acids of MDM2 are sufficient to inhibit p53-mediated transcriptional activation. Oncogene 10: 1275–1282, 1995

    PubMed  Google Scholar 

  9. Wu X, Bayle JH, Olson D, Levine AJ: The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126–1132, 1993

    PubMed  Google Scholar 

  10. Soussi T, May P: Structural aspects of the p53 protein in relation to gene evolution: A second look. J Mol Biol 260: 623–637, 1996

    PubMed  Google Scholar 

  11. Chen J, Marechal V, Levine AJ: Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13: 4107–4114, 1993

    PubMed  Google Scholar 

  12. Wagner P: p53 forms tight complexes with tmsl of fission yeast. Int J Oncol 4: 987–992, 1994

    Google Scholar 

  13. Appel K, Schneider E, Wagner P, Höog J-O, Karlsson C, Montenarh M: A new 42 KDa protein binding to the growth suppressor protein p53. Int J Oncol 5: 667–673, 1994

    Google Scholar 

  14. Delphin C, Huang KP, Scotto C, Chapel A, Vincon M, Chambaz E, Garin J, Baudier J: The in vitro phosphorylation of p53 by calcium-dependent protein kinase C-Characterization of a protein-kinase-C-binding site on p53. Eur J Biochem 245: 684–692, 1997

    PubMed  Google Scholar 

  15. Kraiss S, Barnekow A, Montenarh M: Protein kinase activity associated with immunopurified p53 protein. Oncogene 5: 845–855, 1990

    PubMed  Google Scholar 

  16. Herrmann CPE, Kraiss S, Montenarh M: Association of casein kinase II with immunopurified p53. Oncogene 6: 877–884, 1991

    PubMed  Google Scholar 

  17. Allende JE, Allende CC: Protein kinase CK2: An enzyme with multiple substrates and puzzling regulation. FASEB J 9: 313–323, 1995

    PubMed  Google Scholar 

  18. Pepperkok R, Lorenz P, Ansorge W, Pyerin W: Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem 269: 6986–6991, 1994

    PubMed  Google Scholar 

  19. Prowald K, Fischer H, Issinger OG: Enhanced casein kinase II activity in human tumour cell cultures. FEBS Letters 176: 479–483, 1984

    PubMed  Google Scholar 

  20. Münstermann U, Fritz G, Seitz G, Yiping L, Schneider HR, Issinger O-G: Casein kinase II is elevated in human tumours and rapidly proliferating non-neoplastic tissue. Eur J Biochem 189: 251–257, 1990

    PubMed  Google Scholar 

  21. Appel K, Wagner P, Boldyreff B, Issinger O-G, Montenarh M: Mapping of the interaction sites of the growth suppressor protein p53 with the regulatory β-subunit of protein kinase CK2. Oncogene 11: 1971–1978, 1995

    PubMed  Google Scholar 

  22. Miller M, Lubkowski J, Rao JKM, Danishefsky AT, Omichinski JG, Sakaguchi K, Sakamoto H, Appella E, Gronenbom AM, Clore GM: The oligomerization domain of p53: Crystal structure of the trigonal form. FEBS Letters 399: 166–170, 1996

    PubMed  Google Scholar 

  23. Wagner P, Fuchs A, Prowald A, Montenarh M, Nastainczyk W: Precise mapping of the tms1 binding site on p53. FEBS Letters 377: 155–158, 1995

    PubMed  Google Scholar 

  24. Wagner P, Fuchs A, Nastainczyk W, Götz C, Montenarh M: Fine mapping and regulation of the association of p53 and p34 cdc2. Oncogene 16: 105–111, 1998

    PubMed  Google Scholar 

  25. Nevels M, Rubenwolf S, Spruss T, Wolf H, Dobner T: The adenovirus E4orf6 protein can promote E1A/E1 B-induced focus formation by interfering with p53 tumor-suppressor function. Proc Natl Acad Sci USA 94: 1206–1211, 1997

    PubMed  Google Scholar 

  26. Grankowski N, Boldyreff B, Issinger O-G: Isolation and characterization of recombinant human casein kinase II subunits α and β from bacteria. Eur J Biochem 198: 25–30, 1991

    PubMed  Google Scholar 

  27. Schmidt-Spaniol I, Boldyreff B, Issinger O-G: Isolation and characterization of a monoclonal anti CK-2 alpha subunit antibody of the IgGl subclass. Hybridoma 11: 53–59, 1992

    PubMed  Google Scholar 

  28. Nastainczyk W, Schmidt-Spaniol I, Boldyreff B, Issinger O-G: Isolation and characterization of a monoclonal anti-protein kinase CK2 β-subunit antibody of the IgG class for the direct detection of CK2 β-subunit in tissue cultures of various mammalian species and human tumors. Hybridoma 14: 335–339, 1995

    PubMed  Google Scholar 

  29. Harlow E, Crawford LV, Pim DC, Williamson NM: Monoclonal antibodies specific for the SV40 tumor antigens. J Virol 39: 861–869, 1981

    PubMed  Google Scholar 

  30. Lüscher B, Litchfield DW: Biosynthesis of casein kinase II in lymphoid cell lines. Eur J Biochem 220: 521–526, 1994

    PubMed  Google Scholar 

  31. Prowald A, Schuster N, Montenarh M: Regulation of the DNA binding of p53 by its interaction with protein kinase CK2. FEBS Letters 408: 99–104, 1997

    PubMed  Google Scholar 

  32. Fields S, Jang SK: Presence of a potent transcription activating sequence in the p53 protein. Science 249: 1046–1049, 1990

    PubMed  Google Scholar 

  33. Harris CC: p53 tumor suppressor gene: From the basic research laboratory to the clinic-An abridged historical perspective. Carcinogenesis 17: 1187–1198, 1996

    PubMed  Google Scholar 

  34. Momand J, Zambetti GP, Olson DC, George D, Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245, 1992

    PubMed  Google Scholar 

  35. Yew PR, Liu X, Berk AJ: Adenovirus El B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 8: 190–202, 1994

    PubMed  Google Scholar 

  36. Soussi T: The p53 tumour suppressor gene: a model for molecular epidemiology of human cancer. Molecular Medicine Today 32–37, 1996

  37. Bargonetti J, Reynisdóttir 1, Friedman PN, Prives C: Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6: 1886–1898, 1992

    PubMed  Google Scholar 

  38. Bakalkin G, Yakovieva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, Wiman KG: p53 Binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 91: 413–417, 1994

    PubMed  Google Scholar 

  39. Bakalkin G, Selivanova G, Yakovleva T, Kiseleva E, Kashuba E, Magnusson KP, Szekely L, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends through the C-terminal domain and internal DNA segments via the middle domain. Nucleic Acids Res 23: 362–369, 1995

    PubMed  Google Scholar 

  40. Cariello NF, Cui L, Beroud C, Soussi T: Database and software for the analysis of mutations in the human p53 gene. Cancer Res 54: 4454–4460, 1994

    PubMed  Google Scholar 

  41. Stürzbecher H-W, Brain R, Addison C, Rudge K, Remm M, Grimaldi M, Keenan E, Jenkins JR: A C-terminal α-helix plus basic region motif is the major structural determinant of p53 tetramerization. Oncogene 7: 1513–1523, 1992

    PubMed  Google Scholar 

  42. Ullrich SJ, Sakaguchi K, Lees-Miller SP, Fiscella M, Mercer WE, Anderson CW, Appella E: Phosphorylation at Ser-15 and Ser-392 in mutant p53 molecules from human tumors is altered compared to wild-type p53. Proc Natl Acad Sci USA 90: 5954–5958, 1993

    PubMed  Google Scholar 

  43. Hupp TR, Lane DP: Allosteric activation of latent p53 tetramers. Curr Biol 4: 865–875, 1994

    PubMed  Google Scholar 

  44. Hupp TR, Lane DP: Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases. Cold Spring Harbor Symp Quant Biol 59: 195–206, 1994

    PubMed  Google Scholar 

  45. Wagner P, Fuchs A, Nastainczyk W: Definition of the p53 binding site on the tms1 protein. Int J Oncol 7: 171–175, 1995

    Google Scholar 

  46. Wang Y, Reed M, Wang P, Stenger JE, Mayr G, Anderson ME, Schwedes JF, Tegtmeyer P: p53 domains: Identification and characterization of two autonomous DNA-binding regions. Genes Dev 7: 2575–2586, 1993

    PubMed  Google Scholar 

  47. Wang Y, Prives C: Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376: 88–91, 1995

    PubMed  Google Scholar 

  48. Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appelia E, Gronenborn AM: High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science 265: 386–391, 1994

    PubMed  Google Scholar 

  49. Jeffrey PD, Gorina S, Pavletich NP: Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267: 1498–1502, 1995

    PubMed  Google Scholar 

  50. Dobner T, Horikoshi N, Rubenwolf S, Shenk T: Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272: 1470–1473, 1996

    PubMed  Google Scholar 

  51. Guerra B, Götz C, Wagner P, Montenarh M, Issinger O-G: The carboxy terminus of p53 mimicks the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation. Oncogene 14: 2683–2688, 1997

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götz, C., Scholtes, P., Prowald, A. et al. Protein kinase CK2 interacts with a multi-protein binding domain of p53. Mol Cell Biochem 191, 111–120 (1999). https://doi.org/10.1023/A:1006886727248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006886727248

Navigation