Skip to main content
Log in

Oxygenic photosynthesis–a photon driven hydrogen generator–the energetic/entropic basis of life

  • Published:
Photosynthetica

Abstract

Photosynthesis, as a fundamental element in the life process, is integrated in the evolution of living systems on the basis of hydrogen cycles on various hierarchic levels. Conversion of radiant energy enables the oxidation of water, whereby free oxygen accumulates in the atmosphere. Hydrogen is (reversibly) stored in organic materials formed under reductive CO2-fixation and by the incorporation of the other elements, which are necessary for living systems. All endergonic processes in living cells are finally driven by the energy released through the clean recombination of protons and electrons with oxygen to water. Duration of the stored energy and the complexity of the systems thus produced is correlated negatively with the conversion efficiency of the radiation energy. Entropy is a unifying principle in the evolution of living systems, inclusive human societies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Angerhofer, A., Bittl, R.: Radicals and radical pairs in photosynthesis.-Photochem. Photobiol. 63: 11–38, 1996.

    Google Scholar 

  • Atkinson, D.E., Bourke, E.: pH homeostasis in terrestrial vertebrates. Ammonium ion as a proton source.-Adv. comp. environm. Physiol. 22: 3–26, 1995.

    Google Scholar 

  • Bohr, N.: Licht und Leben.-Naturwissenschaften 21: 245–250, 1933.

    Google Scholar 

  • Boltzmann, L.: Der zweite Hauptsatz der mechanischen Wärmetheorie.-J.A. Barth, Leipzig 1905.

    Google Scholar 

  • Broda, E.: Stand und Entwicklungstendenzen der Bioenergetik.-Physik. Blätter 31: 558–565, 1975.

    Google Scholar 

  • Bresch, C.: Zwischenstufe Leben. Evolution ohne Ziel.-Verl. Piper u. Co., München-Zürich 1977.

    Google Scholar 

  • Caplan, S.R., Ginzburg, M. (ed.): Energetics and Structure of Halophilic Microorganisms. Developments in Halophilic Microorganisms, Vol. I.-Elsevier/North-Holland, Amsterdam 1978.

  • Chapman, R.W.: The cost of complexity.-Nature 335: 21–22, 1988.

    Google Scholar 

  • Danon, A., Caplan, S.R.: CO2 fixation by Halobacterium halobium.-FEBS Lett. 74: 255–258, 1977.

    Google Scholar 

  • Dau, H.: Short-term adaptation of plants to changing light intensities and its relation to photosystem II photochemistry and fluorescence emission.-J. Photochem. Photobiol. B 26: 3–27, 1994.

    Google Scholar 

  • Deisenhofer, J., Norris, J.R. (ed.): The Photosynthetic Reaction Center. Vol. I, II.-Academic Press, San Diego-New York-Boston-London-Sydney-Tokyo-Toronto 1993.

    Google Scholar 

  • Dithfurth, H. von: Am Anfang war der Wasserstoff.-Verl. Droemer Knaur, München-Zürich 1972.

    Google Scholar 

  • Ebeling, W., Feistel, R.: Physik der Selbstorganisation und Evolution.-Akademie-Verlag, Berlin 1986.

    Google Scholar 

  • Ebeling, W., Feistel, R.: Chaos und Kosmos. Prinzipien der Evolution.-Spektrum Akademischer Verlag, Heidelberg-Berlin-Oxford 1994.

    Google Scholar 

  • Ernster, L.: Molecular Mechanisms in Bioenergetics.-Elsevier. Amsterdam-London 1992.

    Google Scholar 

  • Foyer, C.H., Mollineaux, P.M.: Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants.-CRC Press, Boca Raton-Ann Arbor-London-Tokyo 1994.

    Google Scholar 

  • Francé, R.H.: Harmonie in der Natur.-Francksche Verlagshandlung, Stuttgart 1926.

    Google Scholar 

  • Gierer, A.: Die Physik, das Leben, die Seele.-Piper-Verlag, München-Zürich 1986.

    Google Scholar 

  • Goldworthy, A.: Why did nature select green plants?-Nature 328: 207–208, 1987.

    Google Scholar 

  • Grassmann, P.: Der Fluß der Sonnenenergie durch das irdische Leben.-Naturwiss. Rundsch. 41: 1–9, 1988.

    Google Scholar 

  • Haken, H.: Entwicklungslinien der Synergetik I und II.-Naturwissenschaften 75: 163–172, 225–234, 1988.

    Google Scholar 

  • Hansen, U., Seufert, G.: The terpenoid emission pattern of Quercus coccifera L. coincides with the emission pattern found with Quercus ilex L.-In: Borrell, P.M., Borrell, T., Cvitas, T., Kelly, K., Seiler, W. (ed.): Proc. Eurotrac Symposium 96. Pp. 235–239. Computational Mechan. Publ., Southampton 1997.

    Google Scholar 

  • Hansen, U., van Eijk, J., Bertin, N., Staudt, M., Kotzias, D., Seulert, G., Fugit, J.-L., Torres, L., Cecinato, A., Brancaleoni, E., Ciccioli, P., Bomboi Mingarro, M.-T.: The BEMA project. Biogenic emissions and CO2-gas exchange investigated on four mediterranean shrubs. Atmospheric Environment (submitted) 1997.

  • Harold, F.M.: The Vital Force: a Study of Bioenergetics.-Freeman, New York 1986.

    Google Scholar 

  • Hastings, A., Horn, C.L., Ellner, S., Turchin, P., Godfrey, H.C.J.: Chaos in ecology: is mother nature a strange attractor?-Annu. Rev. Ecol. Syst. 24: 1–33, 1993.

    Google Scholar 

  • Havel, L., Durzan, D.J.: Apoptosis in plants.-Bot. Acta 109: 268–277, 1996.

    Google Scholar 

  • Heber, U., Bligny, R., Streb, P., Douce, R.: Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight.-Bot. Acta 109: 307–315, 1996.

    Google Scholar 

  • Heinrich, R., Schuster, S.: The regulation of cellular systems.-Chapman & Hall, New York-Madrid-Tokyo 1996.

    Google Scholar 

  • Heldt, H.W.: Pflanzenbiochemie.-Spektrum, Heidelberg-Berlin-Oxford 1996.

    Google Scholar 

  • Hess, B.: Molekulare und zelluläre Netzwerke.-Naturwiss. Rundsch. 47: 219–226, 1994.

    Google Scholar 

  • Hoffmann, P.: Energetische Aspekte der pflanzlichen Stoffproduktion.-Tag.-Ber. Akad. Landw.-Wiss. DDR Berlin 158: 147–162, 1977.

    Google Scholar 

  • Hoffmann, P.: Einheit und Mannigfaltigkeit im Prozeß der Photosynthese bei Pro-und Eukaryoten.-Biol. Rundsch. 16: 73–88, 1978.

    Google Scholar 

  • Hoffmann, P.: Photosynthese.-Akademie-Verlag, Berlin 1987.

    Google Scholar 

  • Hoffmann, P.: Die Photosynthese-ein photonengetriebener Wasserstoffgenerator-die entropische Grundlage des Lebens auf der Erde.-Biol. Rundsch. 28: 121–125, 1990.

    Google Scholar 

  • Hoffmann, P.: Licht und Leben: Die Photosynthese-energetische Grundlage des Lebens auf der Erde.-In: Meier, K., Strech, K.-H. (ed.): Tohuwabohu. Chaos und Schöpfung. Pp. 83–109. Aufbau Taschenbuch Verl., Berlin 1991.

    Google Scholar 

  • Hoffmann, P., Leupold, D.: Non-linear processes in photosynthetic light absorption.-In: Douglas, R.H., Moan, J., Rontó, G. (ed.): Light in Biology and Medicine. Vol. 2. Pp. 69–76. Plenum Publ. Comp., New York-London 1991.

    Google Scholar 

  • Holzmüller, W.: Die Welt um uns-ihre Entstehung und Erbaltung.-Haag und Herchen Verl., Frankfurt/Main 1995.

    Google Scholar 

  • Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 655–684, 1996.

    Google Scholar 

  • Kabelac, S., Drake, F.D.: The entropy of terrestrial solar radiation.-Solar Energy 48: 239–248, 1992.

    Google Scholar 

  • Kaufman, B.T.: Why NADP?-Trends biol. Sci. 18: 278, 1993.

    Google Scholar 

  • Kelso, J.A.S., Haken, H.: New laws to be expected in the organism: synergetics of brain and behavior.-In: Murphy, M.P., O'Neill, L.A.J. (ed.): What is Life? The Next Fifty Years. Pp. 137–160. Cambridge University Press, Cambridge 1995.

    Google Scholar 

  • Kitzmann, C.: Regulatorische Wechselwirkung zwischen Pyridinnukleotid-und Adenylat-Pool in intakten isolierten Spinatchloroplasten.-Thesis, Humboldt-Universität zu Berlin, math.-nat. Fak. I, Berlin 1996.

    Google Scholar 

  • Klippel, A.: Thermodynamische Aspekte der Photosynthese.-In: Facetten der Thermodynamik.-Festschrift des Inst. für Verfahrenstechnik/Thermodynamik der Technischen Universität Berlin. Pp. 175–179. Techn. Univ., Berlin 1997.

    Google Scholar 

  • Klippel, A., Müller, I.: Plant growth-a thermodynamicists view.-Confinuum Mech. Thermodyn. (submitted) 1997.

  • Kühlbrandt, W., Wang, D.N., Fujiyoshi, Y.: Atomic model of plant light-harvesting complex by electron crystallography.-Nature 367: 614–621, 1994.

    Google Scholar 

  • Kuhn, H., Waser, J.: Selbsorganisation der Materie und Evolution früher Formen des Lebens.-In: Hoppe, W., Lohmann, W., Markl, H., Ziegler, H. (ed.): Biophysik. Pp. 860–907. Springer-Verlag, Berlin-Heidelberg-New York 1982.

    Google Scholar 

  • Lambers, H.: Cyanide-resistent respiration: A non-phosphorylating electron transport pathway acting as an overflow.-Physiol. Plant. 55: 478–563, 1983.

    Google Scholar 

  • Langley, L.L.: Homeostasis. Origin of the Concept.-Dowden, Hutchinson & Ross, Stroudsburg 1973.

    Google Scholar 

  • Laskowski, W., Pohlit, W.: Biophysik I und II.-Thieme Verlag, Stuttgart 1974.

    Google Scholar 

  • Lawton, J.H., Brown, V.K.: Redundancy in ecosystems.-In: Schulze, E.-D., Mooney, H.A. (ed.): Biodiversity and Ecosystem Function. Pp. 255–270. Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest 1993.

    Google Scholar 

  • Leuschner, D.: Thermodynamik in der Biologie.-Akademie-Verlag, Berlin 1989.

    Google Scholar 

  • Lieb, E.H.: The Stability of Matter: From Atoms to Stars.-Springer-Verlag, Heidelberg-Berlin-New York 1991.

    Google Scholar 

  • Lovelock, J.: Gaia. Die Erde ist cin Lebewesen.-Scherz Verlag, Bern-München-Wien 1992.

    Google Scholar 

  • Mainzer, K.: Thinking in Complexity.-Springer-Verlag, Berlin-Heidelberg 1994.

    Google Scholar 

  • Markl, H.: Nichts gibt's umsonst.-Siemens Standpunkt 9/4: 12–20, 1996.

    Google Scholar 

  • Mlikovsky, J., Novák, V.J.A.: Towards a new synthesis in evolutionary biology.-Proceed. Internat. Symposium. Czechoslov. Acad. Sci., Praha 1987.

    Google Scholar 

  • Mohr, H., Schopfer, P.: Pflanzenphysiologie.-Springer-Verlag, Berlin-Heidelberg-New York 1992.

    Google Scholar 

  • Peliti, L., Vulpani, A. (ed.): Lecture Notes in Physics 314. Measures of Complexity.-Springer-Verlag, Berlin-Heidelberg-New York 1988.

    Google Scholar 

  • Polle, A.: Mehler reaction: Friend or foe in photosynthesis?-Bot. Acta 109: 84–89, 1996.

    Google Scholar 

  • Pool, R.: Ecologists flirt with chaos.-Science 243: 310–313, 1989.

    Google Scholar 

  • Prigogine, I.: What is entropy?-Naturwissenschaften 76: 1–8, 1989.

    Google Scholar 

  • Reining, E., Merbach, W., Knof, G.: 15N-Freisetzung von Weizenwurzeln unter Bodenbedingungen.-In: Ökophysiologie des Wurzelraumes. Vol. 5. Pp. 111–114. B.G. Teubner Verlagsges., Stuttgart-Leipzig 1995.

    Google Scholar 

  • Renger, G.: Mechanistic aspects of photosynthetic water cleavage.-Photosynthetica 21: 203–224, 1987.

    Google Scholar 

  • Rensch, B.: Probleme genereller Determiniertheit allen Geschehens.-Parey Verlag, Berlin-Hamburg 1988.

    Google Scholar 

  • Riedl, R.: Energie, Information und Negentropie in der Biosphäre.-Naturw. Rundschau 26: 413–420, 1973.

    Google Scholar 

  • Rompe, R., Treder, H.-J.: Elementarkonstanten und was sie bedeuten.-Akademie-Verlag, Berlin 1988.

    Google Scholar 

  • Schneider, E.D., Kay, J.J.: Order from disorder-the thermodynamics of complexity in biology.-In: Murphy, M.P., O'Neill, L.A.J. (ed.): What is Life? The Next Fifty Years. Pp. 161–173. Cambridge University Press, Cambridge 1995.

    Google Scholar 

  • Schuster, S., Heinrich, R.: Time hierarchy in enzymatic reaction chains resulting from optimality principles.-J. theor. Biol. 29: 189–209, 1987.

    Google Scholar 

  • Schwemmler, W.: Symbiogenese als Motor der Evolution. Grundriß einer Theoretischen Biologie.-Paul Parey, Berlin-Hamburg 1991.

    Google Scholar 

  • Skulachev, V.T.: Transmembrane electrochemical H+-potential as a convertible energy source for the living cell.-FEBS Lett. 74: 1–9, 1977.

    Google Scholar 

  • Stahl, A.: Entropy and Environment.-In: Statistical Physics and Thermodynamics of Nonlinear Nonequilibrium Systems. Pp. 903–1350. World Scientific, Singapore-New Jersey-London-Hong Kong 1993.

    Google Scholar 

  • Stöltzner, M., Thirring, W.: Entstehen neuer Gesetze in der Evolution der Welt.-Naturwissenschaften 81: 243–249, 1994.

    Google Scholar 

  • Stryer, L.: Biochemistry.-Freeman and Co., New York 1995.

    Google Scholar 

  • Tiezzi, E., Marchettini, N.: "Gestalt" shift in modelling the interaction between biophysical constraints and global environment.-In: Rossi, C., Tiezzi, E. (ed.): Ecological Physical Chemistry. Pp. 67–72. Elsevier Science Publ., Amsterdam 1991.

    Google Scholar 

  • Tiezzi, E., Marchettini, N.: Negentropy and ecodynamics: the large poincaré systems (LPS).-In: Bonati, L., Cosentino, U., Lasagni, M., Moro, G., Pitea, D., Schiraldi, A. (ed.): Trends in Ecological Physical Chemistry. Pp. 91–96. Elsevier, Amsterdam-London-New York-Tokyo 1992.

    Google Scholar 

  • Unsöld, A.: Evolution kosmischer, biologischer und geistiger Strukturen. 2nd Ed.-Wiss. Verl., Stuttgart 1983.

    Google Scholar 

  • Vaas, R.: Neue Wege in der Kosmologie.-Naturwiss, Rundschau 2: 43–58, 1994.

    Google Scholar 

  • van Grondelle, R., Dekker, M.M., Gillbro, T., Sundström, V.: Energy transfer in photosynthesis.-Biochim. biophys. Acta 1187: 1–65, 1994.

    Google Scholar 

  • van Voorthuysen, T.: The Electrical Potential as a Gauge of Photosynthetic Performance in Plant Chloroplasts.-Thesis, Wageningen Agr. Univ., Wageningen 1997.

    Google Scholar 

  • Wiedenroth, E.-M.: Das grüne Kraftwerk. Die Primärproduktivität der Erde.-URANIA Verlag, Leipzig Jena Berlin 1981.

    Google Scholar 

  • Witt, H.T.: Examples for the cooperation of photons, excitons, electrons, electric fields and protons in the photosynthesis membrane.-New J. Chem. 11: 91–101, 1987.

    Google Scholar 

  • Witt, H.T.: Primary reactions of oxygenic photosynthesis.-Ber. Bunsenges. phys. Chem. 100: 1923–1942, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, P. Oxygenic photosynthesis–a photon driven hydrogen generator–the energetic/entropic basis of life. Photosynthetica 35, 1–11 (1998). https://doi.org/10.1023/A:1006872110196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006872110196

Navigation