Skip to main content
Log in

High order DNA structure as inferred by optical fluorimetry and scanning calorimetry

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

New quantitative insights on the native high order chromatin-DNA structure existing within interphase nuclei are obtained by monitoring the effects of two common well-characterized fixatives, glutaraldehyde and ethanol/acetic acid mixture, at the level of the intranuclear DNA distribution and structures. Reproducible distinct levels of DNA fluorescence intensity and their intranuclear distribution are apparent in unfixed and fixed thymocytes by using DAPI and quantitative optical microscopy based on a charge coupled device. The fluorescent histograms correlated with the calorimetric thermograms on the very same thymocytes fixed and unfixed, establish an unequivocal baseline for the different levels of structural organization of the chromatin within the intact nucleus; namely their number, DNA packing ratio and fiber diameter. A systematic comparison among all the numerous models, being so far proposed for the quinternary and quaternary levels of DNA folding, to identifies the rope or ribbon-like and the chromonema as the ones that best fit with the in situ distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belmont AS, Braunfeld MB, Sedat JW & Agard DA (1989) Chromosoma (Berlin) 98: 129–143

    Article  PubMed  CAS  Google Scholar 

  2. Belmont AS, Sedat JW & Agard DA (1987) J. Cell Biol. 105: 77–92

    Article  PubMed  CAS  Google Scholar 

  3. Kendall FM, Beltrame F, Zietz S, Belmont AS & Nicolini C (1980) Cell Biophys. 2: 373–404

    PubMed  CAS  Google Scholar 

  4. Kendall FM, Swenson R, Borun Y, Rowinski J & Nicolini C (1977) Science 196: 1106–1109

    PubMed  CAS  Google Scholar 

  5. Manuelidis L & Chen TL (1990). Cytometry 11: 8–25

    Article  PubMed  CAS  Google Scholar 

  6. Nicolini C (1986) Biophysics and Cancer, Plenum Press, N.Y.

    Google Scholar 

  7. Nicolini C (1991) In Molecular Basis of Human Cancer. (pp. 73–100) Plenum Press, N.Y.

    Google Scholar 

  8. Belmont AS, Kendall FM, & Nicolini, C (1984) J. Cell Sci. 65: 123–138

    PubMed  CAS  Google Scholar 

  9. Diaspro A, Bertolotto M, Vergani L & Nicolini C (1991) IEEE Transactions on Biomedical Engineering BME-38: 670–678

    Article  CAS  Google Scholar 

  10. Nicolini C, Trefiletti V, Cavazza B, Cuniberti C, Patrone E, Carlo P & Brambilla G (1983) Science 219: 176–178

    PubMed  CAS  Google Scholar 

  11. Nicolini C, & Kendall F (1977) Physiol. Chem. Phys. 9: 265–283

    CAS  Google Scholar 

  12. Nicolini C, Carlo P, Martelli A, Finollo R, Patrone E, Trefiletti V & Brambilla G (1982) J. Mol. Biol. 161: 155–175

    Article  PubMed  CAS  Google Scholar 

  13. Nicolini C, Cavazza B, Trefiletti V, Pioli F, Beltrame F, Brambilla G, Maraldi N, & Patrone E (1983) J. Cell Sci. 62: 103–115

    PubMed  CAS  Google Scholar 

  14. Vergani L, Mascetti GC, Gavazzo P & Nicolini C (1992) Thermochimica Acta 206: 175–179

    Article  CAS  Google Scholar 

  15. Nicolini C, Diaspro A, Bertolotto M, Facci P & Vergani L (1991) Biochemical and Biophysical Research Comm. 177: 1313–1318

    Article  CAS  Google Scholar 

  16. Diaspro A, Sartore M, Nicolini C, (1990) Image Vision and Computing 8: 130–134

    Article  Google Scholar 

  17. Diaspro A, Adami M, Nicolini C, (1990) Image Vision and Computing 8: 134–141

    Google Scholar 

  18. Agard DA, Hiraoka Y, Shaw P, Sedat JW, (1989) Cell Biol. 30: 353–377

    Article  CAS  Google Scholar 

  19. Agard DA, Sedat JW (1980) Spie. 264: 110–117

    Google Scholar 

  20. Mascetti G, Vergani L, Diaspro A, Carrara S, Radicchi G & Nicolini C (1996) Cytometry 23: 110–119

    Article  PubMed  CAS  Google Scholar 

  21. Kendall FM, Beltrame F & Nicolini C (1979). In Chromatin Structure and Function pp. 265–292, N.Y.: Plenum Press

    Google Scholar 

  22. Dupraw E. (1965) Nature 206: 338–340

    Article  PubMed  CAS  Google Scholar 

  23. Dickerson RE, Drew HR, Conner B. Fratins A & Kopka ML (1982) Science 216: 475–478

    PubMed  CAS  Google Scholar 

  24. Nicolini C (1983) Anticancer Research 3: 63–86

    PubMed  CAS  Google Scholar 

  25. Mc Ghee JD & Felsenfeld G (1980) Annu. Rev. Biochem. 49: 1115–1128

    Article  CAS  Google Scholar 

  26. Nicolini C, Facci P. & Alliata D (1996) Nanobiology, in press

  27. Woodcock CL, Frado L & Rattner J (1984) J. Cell Biol. 99: 42–52

    Article  PubMed  CAS  Google Scholar 

  28. Richmond TJ, Finch JT, Rushton B, Rhodes D & Klug A(1984) Nature 311: 532–537

    Article  PubMed  CAS  Google Scholar 

  29. Finch T. & Klug A. (1976) Proc. Nat. Acad. Sci. USA 73: 1887–1889

    Article  Google Scholar 

  30. Widom J & Klug A (1985) Cell 43: 207–213

    Article  PubMed  CAS  Google Scholar 

  31. Williams S, Athey BD, Muglia LJ, Schappe RS, Gough AH & Langmore JP (1986). Biophys. J. 49, 233–248

    Article  PubMed  CAS  Google Scholar 

  32. Marsden MPF & Laemmli UK (1979) Cell 17: 849–858

    Article  PubMed  CAS  Google Scholar 

  33. Adolph KW (1980) Exp. Cell Res. 125: 95–103

    Article  PubMed  CAS  Google Scholar 

  34. Nicolini C, Vernazza B, Chiabrera A, Maraldi IN, Capitani S (1984) J. Cell Sci. 72: 75–87

    PubMed  CAS  Google Scholar 

  35. Rattner JB and Lin CC (1985) Cell 42: 291–296

    Article  PubMed  CAS  Google Scholar 

  36. Woodcock CL (1994) J. Cell Biol. 1: 11–19

    Article  Google Scholar 

  37. Belmont AS & Bruce K (1994) J. Cell Biol. 127: 287–302

    Article  PubMed  CAS  Google Scholar 

  38. Giammasca PJ, Horowitz RA & Woodcock CL (1993) J. Cell Sci. 105: 551–561

    Google Scholar 

  39. Langmore JP & Paulson JR (1983) J. Cell Biol. 96: 1120–1131

    Article  PubMed  CAS  Google Scholar 

  40. Paulson JR & Laemmli UK (1977) Cell 12: 817

    Article  PubMed  CAS  Google Scholar 

  41. Sedat J & Manuelidis L (1978) Cold Spring Harbour Symp. Biol. 42: 331–345

    CAS  Google Scholar 

  42. Nagl W (1977) In: Rostl TL & Gifford EM (eds) Mechanism of cell division, Dowden, Hutchinson & Ross, Stroudsburg, Pa

    Google Scholar 

  43. Shaw P, Histochem. J. Deconvolution in 3Doptical microscopy 26 (1994) 687–694

    CAS  Google Scholar 

  44. Russo I, Barboro P, Alberti I, Parodi S, Balbi C, Allera C, Lazzarini G, Patrone E, Role of H1 in chromatin folding: a thermodinamical study of chromatin reconstitution by differential scanning calomrimetry, Biochemistry 34 (1995) 301–311

    Article  PubMed  CAS  Google Scholar 

  45. Balbi C, Abelmoschi M, Zunino A, Cuniberti C, Cavazza B, Barboro P and Patrone E (1988) The decondensation process of nuclear chromatin as investigated by Differential Scanning Calorimetry. Biochem. Pharmacol. 37: 1815

    Article  PubMed  CAS  Google Scholar 

  46. Touchetta NA, Cole RD (1985) Differential scanning calorimetry of nuclei reveals the loss of major structural features in chromatin by brief nuclease treatment, Proc. Natl. Acad. Sci. USA 82: 2642

    Article  Google Scholar 

  47. Nicolini C, Trefiletti V, Cavazza B, Cuniberti C, Patrone E, Carlo P, Brambilla G (1983) Science 219: 176

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicolini, C., Carrara, S. & Mascetti, G. High order DNA structure as inferred by optical fluorimetry and scanning calorimetry. Mol Biol Rep 24, 235–246 (1997). https://doi.org/10.1023/A:1006861801216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006861801216

Navigation