Skip to main content
Log in

Glycosylation of asparagine 24 of the natriuretic peptide receptor-B is crucial for the formation of a competent ligand binding domain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

UV cross-linking studies of the natriuretic pepti de receptor- B (NPR-B )using radio labeled C-type natriuretic peptide (CNP) indicate that onlyfully glycosylated receptors are capable of binding ligand. We thereforeused site-directed mutagenesis to determine which potential glycosylationsites are occupied by carbohydrate, and the relevant mutants werecharacterized in order to understand the function of carbohydrate additionat those sites. Our results suggest that five of seven potential N-linkedglycosylation sites are modified. In addition, mutation of asparagine 24results in a loss of ~90% of receptor activity. This mutant isexpressed at levels comparable to the wild-type receptor, and its activityis not significantly different from that of wild-type NPR-B in terms of EC50for CNP. Ligand binding studies on this mutant further show that althoughthere is no change in affinity for ligand, ~90% of receptor bindingis lost. These data suggest that many of the mutant receptors are simply notproperly folded. Our results indicate that glycosylation of asparagine 24 ofNPR-B receptors may be critical for the formation of a competent ligandbinding domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jamison R, Canaan-Kuhl, S, Pratt R: The natriuretic peptides and their receptors. Am J Kid Dis 20: 519–530, 1992

    Google Scholar 

  2. Drewett JG, Garbers DL: The family of guanylyl cyclase receptors and their ligands. Endo Rev 15(2): 135–162, 1994

    Google Scholar 

  3. Brenner BM, Ballerman BJ, Gunning ME, Zeidel ML: Diverse biological actions of atrial natriuretic peptides. Physiol Rev 70: 665–669, 1990

    Google Scholar 

  4. Needleman P, Blaine EH, Greenwald JE, Michener ML, Saper CB, Stockman PT, Tolunay HE: The biochemical pharmacology of atrial peptides. Ann Rev Pharmacol Toxicol 29: 23–54, 1989

    Google Scholar 

  5. Babinski K, Haddad P, Vallerand D, McNicoll N, De Léan A, Ong H: Natriuretic peptides inhibit cicotine-induced whole-cell currents and catecholamine secretion in bovine chromaffin cells: Evidence for the involvement of the atrial natriuretic factor R2 receptors. J Neurochem 64: 1080–1087, 1995

    Google Scholar 

  6. Samson WK, Huang F-LS, Fulton RG: C-type natriuretic peptide mediates the hypothalamic actions of the natriuretic peptides inhibit luteinizing hormone secretion. Endocrin 132: 504–509, 1993

    Google Scholar 

  7. Shimekaki W, Ohta S, Nagata K: C-type natriuretic peptide stimulates secretion of growth hormone from rat pituitary-derived GH3 cells via a cyclic-GMP-mediated pathway. Eur J Biochem 222: 645–650, 1994

    Google Scholar 

  8. Trachte GJ, Kanwal S, Elmquist BJ, Zeigler RJ: C-type natriuretic peptide neuromodulates via ‘clearance’ receptors. Am J Physiol 268: C978–C984, 1995

    Google Scholar 

  9. Tsutsui M, Yanagihara N, Minami K, Kobayashi H, Nakashima Y, Kuroiwa A, Izumi F: C-type natriuretic peptide stimulates catecholamine synthesis through the accumulation of cyclic GMP in cultured bovine adrenal medullary cells. J Pharmacol Exp Ther 268(2): 584–589, 1994

    Google Scholar 

  10. Furuya M, Yoshida M, Hayashi Y, Ohnuma N, Minamino N, Kangawa K, Matsuo H: C-type natriuretic peptide is a growth inhibitor of rat vascular smooth muscle cells. Biochem Biophys Res Comm 177: 927–931, 1991

    Google Scholar 

  11. Kariya K, Kawahara Y, Araki S, Fukuzaki H, Takai Y: Antiproliferative action of cyclic GMP-elevating vasodilators in cultured rabbit aortic smooth muscle cells. Atherosclerosis 80: 143–147, 1989

    Google Scholar 

  12. Porter JG, Catalano R, McEnroe G, Lewicki JA, Protter AA: C-type natriuretic peptide inhibits growth factor-dependent DNA synthesis in smooth muscle cells. Am J Physiol 263: C1001–C1006, 1992

    Google Scholar 

  13. Stingo A, Clavell A, Aarhus L, Burnett J: Cardiovascular and renal action of C-type natriuretic peptide. Am J Physiol 262: H308–H312, 1992

    Google Scholar 

  14. Schultz S, Singh S, Bellet RA, Singh G, Tubb J, Chin H, Garbers D: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162, 1989

    Google Scholar 

  15. Chang M-S, Lowe D, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylyl cyclases. Nature 341: 68–72, 1989

    Google Scholar 

  16. Duda T, Goraczniak RM, Sitaramayya A, Sharma RK: Cloning and expression of an ATP-regulated human retina C-type natriuretic factor receptor guanylyl cyclase. Biochem 32: 1391–1395, 1993

    Google Scholar 

  17. Fenrick R, Babinski K, McNicoll N, Therrien M, Drouin J, De Léan A: Cloning and functional expression of the bovine natriuretic peptide receptor-B (natriuretic factor R1C subtype). Mol Cell Biochem 137: 173–182, 1994

    Google Scholar 

  18. Lowe D, Chang M-S, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8: 1377–1384, 1989

    Google Scholar 

  19. Chinkers M, Garbers DL, Chang M-S, Lowe D, Chin H, Goeddel DV, Schulz S: A membrane form of guanylyl cyclase is an atrial natriuretic peptide receptor. Nature 38: 78–83, 1989

    Google Scholar 

  20. Pandey KN, Singh S: Molecular cloning and expression of murine guanylyl cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem 265: 12342–12348, 1990

    Google Scholar 

  21. Schoenfeld JR, Sehl P, Quan C, Burnier JP, Lowe DG: Agonist selectivity for three species of natriuretic peptide receptor-A. Mol Pharm 47: 172–180, 1995

    Google Scholar 

  22. Fenrick R, McNicoll N, De Léan A: N-linked glycosylation is critical for natriuretic peptide receptor-B function. Mol Cell Biochem 165: 103–109, 1996

    Google Scholar 

  23. Kornfeld R, Kornfeld S: Assembly of asparagine-linked oligosaccarides. Ann Rev Biochem 54: 631–664, 1985

    Google Scholar 

  24. Cullen BR: Use of eukaryotic expression technology in the functional analysis of cloned genes. Methods Enzymol 152: 684–703, 1987

    Google Scholar 

  25. Fethiere J, Meloche S, Nguyen TT, Ong H, De Léan A: Distinct properties of atrial natriuretic factor receptor subpopulations in epithelial and fibroblast cell lines. Mol Pharm 35: 584–592, 1989

    Google Scholar 

  26. Rondeau J-J, McNicoll N, Lord C, Larose L, Meloche S, Gagnon J, Ong H, De Léan A: Production of polyclonal antibody to the bovine adrenal atrial natriuretic factor R1 receptor. J Receptor Research 12(4): 485–505, 1992

    Google Scholar 

  27. Larose L, McNicoll N, Rondeau J-J, Escher E, De Léan A: Photoaffinity labelling of atrial natriuretic factor (ANF)-R1 receptor by underivatized 125I-ANF. Biochem 267: 379–384, 1990

    Google Scholar 

  28. De Léan A, Munson PJ, Rodbard D: Simultaneous analysis of families of sigmoidal curves: Application to bioassay, radioligand assay, physiological dose-response curves. Am J Physiol 235: E97–El02, 1978

    Google Scholar 

  29. De Léan A, Hancock AA, Lefkowitz RJ: Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol Pharm 21: 5–16, 1981

    Google Scholar 

  30. Bennett B, Bennett G, Vitangcol R, Jewett J, Burnier J, Henzel W, Lowe D: Extracellular domain-IgG fusion Proteins for three human natriuretic peptide receptors. J Biol Chem 266: 23060–23067, 1991

    Google Scholar 

  31. Bordo D, Argos P: Suggestions for ‘safe’ residue substitutions in sitedirected mutagenesis. Journal of Molecular Biology 217: 21–29, 1991

    Google Scholar 

  32. Stults JT, O'Connell KL, Garcia C, Wong S, Engel AM, Garbers DL, Lowe DG: The disulfide linkages and glycosylation sites of the human natriuretic peptide receptor-C. Biochem 33: 11372–11381, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenrick, R., Bouchard, N., McNicoll, N. et al. Glycosylation of asparagine 24 of the natriuretic peptide receptor-B is crucial for the formation of a competent ligand binding domain. Mol Cell Biochem 173, 25–32 (1997). https://doi.org/10.1023/A:1006855522272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006855522272

Navigation