Skip to main content
Log in

Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The pathophysiologic importance of insulin resistance in diseases such as obesity and diabetes mellitus has led to great interest in defining the mechanism of insulin action as well as the means to overcome the biochemical defects responsible for the resistance. Vanadium compounds have been discovered to mimic many of the metabolic actions of insulin both in vitro and in vivo and improve glycemic control in human subjects with diabetes mellitus. Apart from its direct insulinmimetic actions, we found that vanadate modulates insulin metabolic effects by enhancing insulin sensitivity and prolonging insulin action. All of these actions appear to be related to protein tyrosine phosphatase (PTP) inhibition. However, in contrast to its stimulatory effects, vanadate inhibits basal and insulin-stimulated system A amino acid uptake and cell proliferation. The mechanism of these actions also appears to be related to PTP inhibition, consistent with the multiple roles of PTPs in regulating signal transduction. While the precise biochemical pathway of vanadate action is not yet known, it is clearly different from that of insulin in that the insulin receptor and phosphatidylinositol 3′-kinase do not seem to be essential for vanadate stimulation of glucose uptake and metabolism. The ability of vanadium compounds to ‘bypass’ defects in insulin action in diseases characterized by insulin resistance and their apparent preferential metabolic versus mitogenic signaling profile make them attractive as potential pharmacological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter T: A thousand and one protein kinases. Cell 50: 823–829, 1987

    PubMed  Google Scholar 

  2. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212, 1990

    PubMed  Google Scholar 

  3. Pawson T: Protein nodules and signalling networks. Nature 373: 573–580, 1995

    PubMed  Google Scholar 

  4. lhle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O: Signaling by the cytokine receptor superfamily JAKs and STATS. Trends Biochem Sci 19: 222–227, 1994

    PubMed  Google Scholar 

  5. Roupas P, Herington AC: Postreceptor signaling mechanisms for growth hormone. Trends Endocrinol Metab 5: 154–158, 1994

    Google Scholar 

  6. Clark EA, Brugge JS: Integrins and signal transduction pathways: The road taken. Science 268: 233–239, 1995

    PubMed  Google Scholar 

  7. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J: A role for Pyk2 and Src in linking G-protein coupled receptors with MAP kinase activation. Nature 383: 547–550, 1996

    PubMed  Google Scholar 

  8. Fischer EH, Charbonneau H, Tonks N-K: Protein tyrosine phosphatases: A diverse family of intracellular and transmembrane enzymes. Science 253: 401–406, 1991

    PubMed  Google Scholar 

  9. Walton KM, Dixon JE: Protein tyrosine phosphatases. Annu Rev Biochem 62: 101–120, 1993

    PubMed  Google Scholar 

  10. Fauman EB, Saper MA: Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21: 413–417, 1996

    PubMed  Google Scholar 

  11. White MF, Kahn CR: The insulin signaling system. J Biol Chem 269: 1–5, 1994

    PubMed  Google Scholar 

  12. Patti M-E, Sun X-J, Bruening JC, Araki E, Lipes MA, White MF, Kahn CR: 4PS/Insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. J Biol Chem 270: 24670–24673, 1995

    PubMed  Google Scholar 

  13. Gustafson TA, He W, Craparo A, Schaub CD, O'Neill TJ: Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol 15: 2500–2508, 1995

    PubMed  Google Scholar 

  14. van der Geer P, Wiley S, Ka-Man Lai V, Olivier JP, Gish GD, Stephens R, Kaplan D, Shoelson S, Pawson T: A conserved amino-terminal Shc domain binds to phosphotyrosine motifs in activated receptors and phosphopeptides. Curr Biol 5: 404–412, 1995

    PubMed  Google Scholar 

  15. Cheatham B, Kahn CR: Insulin action and the insulin signaling network. Endo Rev 16: 117–142, 1995

    Google Scholar 

  16. Sun XJ, Crimmins DL, Myers MG, Miralpeix M, White MP: Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 13: 7418–7428, 1993

    PubMed  Google Scholar 

  17. Macara IG: Vanadium: An element in search of a role. Trends Biochem Sci 5: 92–94, 1980

    Google Scholar 

  18. Cantley L, Resh M, Guidotti G: Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature Lond 272: 552–554, 1978

    PubMed  Google Scholar 

  19. Nechay BR, Nanninga LB, Nechay PSE, Post RL, Granthan JJ, Macara IG, Kubena LF, Phillips TD, Nielsen FFH: Role of vanadium in biology. Fed Proc 45: 123–132, 1986

    PubMed  Google Scholar 

  20. Stankiewicz PJ, Tracey AS, Crans DC: Inhibition of phosphate-metabolizing enzymes by oxovanadium comples. In: H Sigel, A Sigel (eds). Metal Ions in Biological Systems. Marcel Dekker, New York, 1995, 31: 287–324a

    Google Scholar 

  21. Swarup G, Cohen S, Garbers D: Inhibition of membrane phosphotyrosyl-protein phosphatase activity by vanadate. Biochem Biophys Res Commun 107: 1104–1109, 1982

    PubMed  Google Scholar 

  22. Swarup G, Speeg JKV, Coben S, Garbers DL: Phosphotyrosyl-protein phosphatase of TCRC-2 cells. J Biol Chem 257: 7298–7301, 1982

    PubMed  Google Scholar 

  23. Tolman EL, Barris E, Bums M, Pansini A, Partridge R: Effects of vanadium on glucose metabolism in vitro. Life Sci 25: 1159–1164, 1979

    PubMed  Google Scholar 

  24. Dubyak GR, Kleinzeller A: The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as (Na+-K+)-ATPase inhibitor. J Biol Chem 255: 5306–5312, 1980

    PubMed  Google Scholar 

  25. Shechter Y, Karlish SJD: Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature 284: 556–558, 1980

    PubMed  Google Scholar 

  26. Heyliger CE, Tahiliani AG, McNeill JH: Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227: 1474–1477, 1985

    PubMed  Google Scholar 

  27. Crans DC: Aqueous chemistry of labile oxovanadates: Relevance to biological studies. Comm Inorganic Chem 16: 1–33, 1994

    Google Scholar 

  28. Shaver A, Ng JB, Hall DA, Posner BI: The chemistry of peroxovanadium compounds relevant to insulin mimesis. Mol Cell Biochem 153: 5–15, 1995

    PubMed  Google Scholar 

  29. Shechter Y: Insulin-mimetic effects of vanadate: Possible implications for future treatment of diabetes. Diabetes 39: 1–5, 1990

    PubMed  Google Scholar 

  30. Posner BI, Shaver A, Fantus IG: Insulin mimetic agents: Vanadium and peroxovanadium compounds. In: CJ Bailey, PR Flatt (eds). New Antidiabetic Drugs. Smith-Gordon, London, 1990, pp 107–118

    Google Scholar 

  31. Orvig C, Thompson KH, Battell M, McNeill JH: Vanadium compounds as insulin mimics. In: H Sigel, A Sigel (eds). Metal Ions in Biological Systems. Marcel Dekker, New York, 1995, 31: 575–594

    Google Scholar 

  32. Brichard SM, Ongemba LN, Henquin JC: Oral vanadate decreases muscle insulin resistance in obese fa/fa rats. Diabetologia 35: 522–527, 1992

    PubMed  Google Scholar 

  33. Tsiani E, Fantus IG: Vanadium compounds: Biological actions and potential as pharmacological agents. Trends Endocrinol Metab 8: 51–58, 1997

    Google Scholar 

  34. Brichard SM, Henquin J-C: The role of vanadium in the management of diabetes. Trends Pharmacol Sci 16: 265–270, 1995

    PubMed  Google Scholar 

  35. Kahn CR: Insulin resistance, insulin insensitivity, and insulin unresponsiveness: A necessary distinction. Metabolism 27: 1893–1902, 1978

    PubMed  Google Scholar 

  36. Fantus IG, Ahmad F, Deragon G. Vanadate augments insulin binding and prolongs insulin action in rat adipocytes. Endocrinology 127: 2716–2725, 1990

    PubMed  Google Scholar 

  37. Eriksson JW, Lonnrath P, Smith U: Vanadate increases cell surface insulin binding and improves insulin sensitivity in both normal and insulin-resistant rat adipocytes. Diabetologia 35: 510–516, 1992

    PubMed  Google Scholar 

  38. Brichard SM, Pottier AM, Henquin JC: Long-term improvement of glucose homeostasis by vanadate in obese hyperinsulinemic fa/fa rats. Endocrinology. 125: 2510–2516, 1989

    PubMed  Google Scholar 

  39. Rossetti L, Laughlin MR: Correction of chronic hyperglycemia with vanadate, but not with phlorizin, normalizes in vivo glycogen repletion and in vitro glycogen synthase activity in diabetic skeletal muscle. J Clin Invest 84: 892–899, 1989

    PubMed  Google Scholar 

  40. Meyerovitch J, Rothenberg P, Shechter Y, Bonner-Weir S, Kahn CR: Vanadate normalizes hyperglycemia in two mouse models of non-insulin-dependent diabetes mellitus. J Clin Invest 87: 1286–1294, 1991

    PubMed  Google Scholar 

  41. Fantus IG, Ahmad F, Deragon G: Vanadate augments insulin-stimulated insulin receptor kinase activity and prolongs insulin action in rat adipocytes: Evidence for transduction of amplitude of signaling into duration of response. Diabetes 43: 375–383, 1994

    PubMed  Google Scholar 

  42. Haring HU, Biermann E, Kemmler W: Relation of insulin receptor occupancy and deactivation of glucose transport. Am J Physiol 242: E234–E240, 1982

    PubMed  Google Scholar 

  43. Fantus IG, Kadota S, Deragon G, Foster B, Posner BI: Pervanadate [peroxides of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochemistry 28: 8864–8871, 1989

    PubMed  Google Scholar 

  44. Clark AS, Fagan JM, Mitch WE: Selectivity of insulin-like actions of vanadate on glucose and protein metabolism in skeletal muscle. Biochem J 232: 273–276, 1985

    PubMed  Google Scholar 

  45. Foot E, Bliss T, Fernandes L, DaCosta C, Leighton B: The effects of orthovanadate, vanadyl and peroxides of vanadate on glucose metabolism in skeletal muscle preparations in vitro. Mol Cell Biochem 109: 157–162, 1992

    PubMed  Google Scholar 

  46. Tsiani E, Abdullah N, Fantus IG: The insulin-mimetic agents vanadate and pervanadate stimulate glucose but inhibit amino acid uptake. Am J Physiol 272: C156–C162, 1997

    PubMed  Google Scholar 

  47. Posner BI, Faure R, Burgess JW, Bevan AP, Lachance D, Zhang-Sun G, Fantus IG, Ng JB, Hall DA, Soo Lum B, Shaver A: Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J Biol Chem 269: 4596–4604, 1994

    PubMed  Google Scholar 

  48. Nasmyth K: Viewpoint: Putting the cell cycle in order. Science 274: 1643–1645, 1996

    PubMed  Google Scholar 

  49. Sherr CJ: Cancer cell cycles. Science 274: 1672–1677, 1996

    PubMed  Google Scholar 

  50. Klarlund JK: Transformation of cells by an inhibitor of phosphatases acting on phosphotyrosine proteins. Cell 41: 707–717, 1985

    PubMed  Google Scholar 

  51. Feldman RA, Lowy DR, Vass WC: Selective potentiation of C-fps/fes transforming activity by a phosphatase inhibitor. Oncogene Res 5: 187–197, 1990

    PubMed  Google Scholar 

  52. Chen Y, Chan TM: Orthovanadate and 2,3-dimethoxy-1,4-naphthoquinone augment growth factor-induced cell proliferation and c-fos gene expression in 3T3-L1 cells. Arch Biochem Biophys 305: 9–16, 1993

    PubMed  Google Scholar 

  53. Wang H, Scott RE: Unique and selective mitogenic effects of vanadate on SV40-transformed cells. Mol Cell Biochem 153: 59–67, 1995

    PubMed  Google Scholar 

  54. Hanauske U, Hanauske A-R, Marshall MH, Muggia VA, Von Hoff DD: Biphasic effect of vanadium salts on in vitro tumor colony growth. Intern J Cell Cloning 5: 170–178, 1987

    Google Scholar 

  55. Cruz TF, Morgan A, Min W: In vitro and in vivo antineoplastic effects of orthovanadate. Mol Cell Biochem 153: 161–166, 1995

    PubMed  Google Scholar 

  56. Faure R, Vincent M, Dufour M, Shaver A, Posner BI: Arrest at the G2/M transition of the cell cycle by protein-tyrosine phosphatase inhibition: Studies on a neuronal and a glial cell line. J Cell Biochem 59: 389–401, 1995

    PubMed  Google Scholar 

  57. Djordjevic C: Antitumor activity of vanadium compounds. In: H Sigel, A Sigel (eds). Metal Ions in Biological Systems. Marcel Dekker Inc., New York, 1995, 31: 595–616

    Google Scholar 

  58. Beguinot F, Kahn CR, Moses AC, Smith RJ: Distinct biologically active receptors for insulin, insulin-like growth factor 1, and insulin-like growth factor II in cultured skeletal muscle cells. J Biol Chem 260: 15892–15898, 1985

    PubMed  Google Scholar 

  59. Giorgino F, Smith RJ: Dexamethasone enhances insulin-like growth factor-1 effects on skeletal muscle cell proliferation. Role of specific intracellular signaling pathways. J Clin Invest 96: 1473–1483, 1995

    PubMed  Google Scholar 

  60. Kadota S, Fantus IG, Deragon G, Guyda HJ, Hersh B, Posner BI: Peroxide(s) of vanadium: A novel and potent insulin-mimetic agent which activates the insulin receptor kinase. Biochem Biophys Res Commun 147: 259–266, 1987

    PubMed  Google Scholar 

  61. Skolnik EY, Baker A, Li N, Lee CH, Lowenstein E, Mohammadi M, Margolis B, Schlessinger J: The function of GRB2 in binding the insulin receptor to ras signaling pathways. Science 260: 1953–1955, 1993

    PubMed  Google Scholar 

  62. Milarski KL, Saltiel AR: Expression of catalytically inactive syp phosphatase in 3T3 cells blocks stimulation of mitogen-activated protein kinase by insulin. J Biol Chem 269: 21239–21243, 1994

    PubMed  Google Scholar 

  63. Xiao S, Rose DW, Sasaoka T, Maegawa H, Burke RT Jr, Roller PP, Shoelson SE, Olefsky JM: Syp (SH-PTP2) is a positive mediator of growth factor-stimulated mitogenic signal transduction. J Biol Chem 269: 21244–21248, 1994

    PubMed  Google Scholar 

  64. Noguchi T, Matozaki T, Horita K, Fujioka Y, Kasuga M. Role of SH-PTP2, a protein tyrosine phosphatase with Src homology 2 domains, in insulin stimulated Ras activation. Mol Cell Biol 14: 6674–6682, 1994

    PubMed  Google Scholar 

  65. Morgan DO: Principles of CDK regulation. Science 374: 131–134, 1995

    Google Scholar 

  66. Sebastian B, Kakizuka A, Hunter T: cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc Natl Acad Sci USA 90: 30521–3524, 1993

    Google Scholar 

  67. Krek W, DeCaprio JA: Cell synchronization. Meth Enzymol 254: 114–124, 1995

    PubMed  Google Scholar 

  68. Hamaguchi T, Sudo T, Osada H: RK-682, a potent inhibitor of tyrosine phosphatase arrested the mammalian cell cycle progression at G1 phase. FEBS Lett 372: 54–58, 1995

    PubMed  Google Scholar 

  69. D'Onofrio F, Le MQ, Chiasson J-L, Srivastava AK: Activation of mitogen-activated protein (MAP) kinases by vanadate is independent of insulin receptor autophosphorylation. FEBS Lett 340: 269–275, 1994

    PubMed  Google Scholar 

  70. Pandey SK, Chiasson JL, Srivastava AK: Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Mol Cell Biochem 153: 69–78, 1995

    PubMed  Google Scholar 

  71. Band CJH, Posner BI: Phosphatidylinositol 3'-kinase and p70S6K are required for insulin but not bisperoxovanadium 1, 10 phenanthroline [bpV(phen)] inhibition of insulin-like growth factor binding protein gene expression. Evidence for MEK-independent activation of mitogen-activated protein kinase by bpV(phen). J Biol Chem 272: 138–145, 1997

    PubMed  Google Scholar 

  72. Sun H, Tonks NK, Bar-Sagi D: Inhibition of Ras-induced DNA synthesis by expression of the phosphatase MKP-1. Science 266: 285–288, 1994

    PubMed  Google Scholar 

  73. Groom LA, Sneddon AA, Alessi DR, Dowd S, Keyse SM: Differential regulation of the MAP, SAP and RK/p38 kinases by Pystl, a novel cytosolic dual-specificity phosphatase. EMBO J 15: 3621–3632, 1996

    PubMed  Google Scholar 

  74. Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268: 14553–14556, 1993

    PubMed  Google Scholar 

  75. Marshall CJ: Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–186, 1995

    PubMed  Google Scholar 

  76. Lamphere L, Lienhard GE: Components of signaling pathways for insulin and insulin like growth factor-I in muscle myoblasts and myotubes. Endocrinology 131: 2196–2202, 1992

    PubMed  Google Scholar 

  77. deVries-Smits AMM, Burgering BMT, Leevers SJ, Marshall CJ, Bos JL: Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature 357: 602–604, 1992

    PubMed  Google Scholar 

  78. Shisheva A, Shechter Y: Role of cytosolic tyrosine kinase in mediating insulin-like actions of vanadate in rat adipocytes. J Biol Chem 268: 6463–6469, 1993

    PubMed  Google Scholar 

  79. Shisheva A, Shechter Y: Mechanism of pervanadate stimulation and potentiation of insulin-activated glucose transport in rat adipocytes: Dissociation from vanadate effect. Endocrinology 133: 1562–1568, 1993

    PubMed  Google Scholar 

  80. Huyer G, Liu S, Kelly J, Moffat J, Pryette P, Kennedy B, Tsaprailis G, Gesser MJ, Ramachandran C: Mechanism of inhibition of protein-tyrosine phosphatase by vanadate and pervanadate. J Biol Chem 272: 843–851, 1997

    PubMed  Google Scholar 

  81. Tsiani E, Sorisky A, Fantus IG: Vanadate and pervanadate increase glucose uptake in L6 skeletal muscle cells by a mechanism independent of PI3K. 10th International Congress of Endocrinology. Program and Abstracts, Vol. 11: OR66–6, 1997

  82. Ida M, Imai K, Hashimoto S, Kawashima H: Pervanadate stimulation of wortmannin-sensitive and-resistant 2-deoxyglucose transport in adipocytes. Biochem Pharmacol 51: 1061–1067, 1996

    PubMed  Google Scholar 

  83. Folli F, Saad MJA, Backer JM, Kahn CR: Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest 92: 1787–1794, 1993

    PubMed  Google Scholar 

  84. Goodyear U, Giorgino F, Sherman LA, Carey J, Smith RJ, Dohm GL: Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. J Clin Invest 95: 2195–2204, 1995

    PubMed  Google Scholar 

  85. Bjornholm M, Kawano Y, Lehtihet M, Zierath JR: Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 46: 524–527, 1997

    PubMed  Google Scholar 

  86. Goldfine AB, Simonson DC, Folli F, Patti M-E, Kahn CR: In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 153: 217–231, 1995

    PubMed  Google Scholar 

  87. Cohen N, Halberstam M, Shlimovich, Chang CJ, Shamoon H, Rossetti L: Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 95: 2501–2509, 1995

    PubMed  Google Scholar 

  88. DeFronzo RA, Ferrannini E: Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia and atherosclerotic cardiovascular disease. Diabetes Care 14: 173–194, 1991

    PubMed  Google Scholar 

  89. Tlsty T, Briot A, Poulose B: Analysis of cell cycle checkpoint status in mammalian cells. Meth Enzymol 254: 125–133, 1995

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fantus, I.G., Tsiani, E. Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem 182, 109–119 (1998). https://doi.org/10.1023/A:1006853426679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006853426679

Navigation