Skip to main content
Log in

The influence of surface carbohydrates on the interaction of Fonsecaea pedrosoi with Chinese Hamster Ovary glycosylation mutant cells

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

In order to better understand the role played by surface glycoconjugates during cell adhesion and endocytosis by the dematiaceous fungi Fonsecaea pedrosoi, we analyzed the interaction between this microorganism and five mutants of Chinese Hamster Ovary (CHO) cells, which differ from each other in the exposition of carbohydrate residues on the cell surface. Five clones (Gat-2 parental, and the clones: Lec1, Lec2, Lec8 and ldlLec1) were tested and the adhesion and endocytic indexes were determined after 2 hours of interaction. The Lec1 and ldlLec1 clones, which present exposed mannose residues, showed the greater adhesion index (AI). On the other hand, the Lec8 clone, which exposes N-acetylglucosamine on the cell surface, presented the greater endocytic index. The role played by surface-exposed carbohydrate residues was further analyzed by addition of mannose or N-acetylglucosamine to the interaction medium and by previous incubation of the cells in the presence of the lectins Concanavalin A (ConA) and wheat germ agglutinin (WGA). The results obtained suggest that mannose residues are involved in the first step of adhesion of F. pedrosoi to the cell surface, while N-acetylglucosamine residues are involved on its ingestion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rippon JW. Chromoblastomycosis. In: WB Sounders (ed), Medical Mycology, Philadelphia, 1988: 276–296.

    Google Scholar 

  2. Ellis DH, Griffiths DA. The location and analysis of melanins in the cell walls of some soil fungi. Am J Microbiol 1974; 20: 1379–1386.

    CAS  Google Scholar 

  3. Alviano CS, Farbiarz SR, De Souza W, Angluster J, Travassos LR. Characterization of Fonsecaea pedrosoi melanin. J Gen Microbiol 1991; 137: 837–844.

    PubMed  CAS  Google Scholar 

  4. Londero AT. Chromoblastomycosis. in AI Brande (ed). Medical Microbiology and Infection diseases. WB Sounders Co, Philadelphia 1981: 1578–1581.

    Google Scholar 

  5. Hirsch BC, Jonhson WC. Pathology of granulomatous diseases: mixed inflamatory granulomas. Int J Dermatol 1984; 23: 585–597.

    Google Scholar 

  6. Londero AT, Ramos CD. Chromoblastomicose no interior do estado do Rio Grande do Sul. Bras Dermatol 1989; 64: 155–158.

    Google Scholar 

  7. Kennedy MJ. Adhesion and association mechanisms of Candida albicans. In: McGinnis MR (ed) Current topics in medical mycology. New York, Springer Verlag 1987: 73–169.

    Google Scholar 

  8. Sharon N, Lis H. Carbohydrates in cell recognition. Sci Am 1993; 268: 74–81.

    Article  Google Scholar 

  9. Isberg RR, Tran Van Nhieu G. Binding and internalization of microorganisms by integrin receptors. Trends Microbiol 1994; 2: 10–14.

    Article  PubMed  CAS  Google Scholar 

  10. Mendes-Giannini MJS, Ricci LC, Uemura MA, Toscano E, Arns W. Infection and apparent invasion of Vero cells by Paracoccidioides brasilienses. J Med Vet Mycol 1994; 32: 189–197.

    PubMed  CAS  Google Scholar 

  11. Bonilha VL, Ciavaglia MC, De Souza W, Silva Filho FC. The involvement of terminal carbohydrate of the mammalian cell 135 surface in the cytoadhesion of trichomonads. Parasitol Res 1994; 308: 718–721.

    Google Scholar 

  12. Lloyd KO, Travassos LR. Immunochemical studies on arhamno-D-mannans of Sporothrix schenckii and related fungi by use of rabbit and human antisera. Carb Res 1975; 40: 89–97.

    Article  CAS  Google Scholar 

  13. Strobel G, Van Alfen H, Hapner KD, McNineil M, Albersheim P. Some phytotoxic glycopeptides from Ceratocystis ulmi, the Dutch Elm disease pathogen. Biochim Biophys Acta 1978; 538: 600–75.

    Google Scholar 

  14. Alviano CS, Gorin PAJ, Travassos LR. Surface polysaccharides of phytopathogenic strains of Ceratocystis paradoxa and Ceratocyti fimbriata isolated from different hosts. Exp Mycol 1979; 3: 174–187.

    Article  CAS  Google Scholar 

  15. Travassos LR, De Souza W, Mendonça-Previato L, Lloyd KO. Location and biochemical nature of surface components reacting with Concanavalin A in different cell types Sporothrix schenkii. Exp Mycol 1977; 1: 293–305.

    Article  CAS  Google Scholar 

  16. Souza ET, Silva-Filho FC, De Souza W, Alviano CS, Angluster J, Travassos LR. Identification of sialic acids on cell surface of hyphae and conidia of the human pathogen Fonsecaea pedrosoi. J Med Vet Mycol 1986; 24: 145–153.

    PubMed  CAS  Google Scholar 

  17. Soares RMA, Angluster J, De Souza W, Alviano C. Carbohydrate and lipid components of hyphae and conidia of the human pathogen Fonsecaea pedrosoi. Mycopathologya 1995; 132: 71–77.

    Article  CAS  Google Scholar 

  18. Chapman D. Fluidity and phase transition of cell membranes. Biomembrane 1975; 7: 1–9.

    CAS  Google Scholar 

  19. Szaniszlo PJ, Cooper BH, Vogers HS. Chemical compositions of the hyphal walls of three chromomycosis agents. Sabouraudia 1972; 10: 94–102.

    PubMed  CAS  Google Scholar 

  20. Sans-Blas G. The cell wall of fungal human pathogens: Its possible role in the host-parasite relationships. Mycopathologya 1982; 79: 159–184.

    Article  Google Scholar 

  21. Farbiarz SR, Carvalho TU, Alviano C, De Souza W. Inhibitory effect of melanin on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro. J Med Vet Mycol 1992; 30: 265–273.

    PubMed  CAS  Google Scholar 

  22. Farbiarz SR, De Carvalho TU, Alviano C, De Souza W. Fine structure and cytochemistry of the interaction between Fonsecaea pedrosoi and mouse resident macrophages. J Med Vet Mycol 1990; 28: 373–383.

    PubMed  CAS  Google Scholar 

  23. Rozental S, Alviano CS, De Souza W. Fine structure and cytochemical study of the interaction between Fonsecaea pedrosoi and rat polymorphonuclear leukocyte. J Med Vet Mycol 1996; 34: 323–330.

    PubMed  CAS  Google Scholar 

  24. Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet 1984; 18: 525–552.

    Article  PubMed  CAS  Google Scholar 

  25. Stanley P. Membrane mutants of animal cells: rapid identification of those with primary defect in glycosylation. Mol Cel Biol 1985; 5: 923–929.

    CAS  Google Scholar 

  26. Li E, Becker A, Samuel L, Stanley Jr. Chinese hamster ovary cells deficient in N-acetylglucosaminyltransferase I activity are resistant to Entamoeba histolytica – mediated cytotoxicity. Infect Immun 1989; 57: 8–12.

    PubMed  CAS  Google Scholar 

  27. Ciavaglia MC, De Carvalho TU, De Souza W. Interaction of Trypanosoma cruzi with cells with altered glycosylation patterns. Biochem Biophys Res Comm 1993; 193: 718–721.

    Article  CAS  Google Scholar 

  28. Oliveira LG, Resende MA, Lopes CF, Cisalpino EO. Isolamento e identificaç ão dos agentes da cromomicose em Belo Horizonte. Rev Soc Bras Med Trop 1973; 7: 1–10.

    Google Scholar 

  29. Booth C. Fungal Culture media. In: Academic Press (ed), Methods in Microbiology. New York, 1971, 49–94.

  30. Krieger M, Redy P, Kosarsky K, Kinsgley D, Hobbie L, Penman M. Analysis of the synthesis, intracellular sorting and function of glycoproteins using a mammalian cell mutant with reversible glycosylation defects. Meth Cell Biol 1989; 32: 57–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limongi, C.L., Rozental, S., Alviano, C.S. et al. The influence of surface carbohydrates on the interaction of Fonsecaea pedrosoi with Chinese Hamster Ovary glycosylation mutant cells. Mycopathologia 138, 127–135 (1997). https://doi.org/10.1023/A:1006841529438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006841529438

Navigation