Skip to main content
Log in

Structure and structure formation of the 20S proteasome

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Eukaryotic 20S proteasomes are complex oligomeric proteins. The maturation process of the 14 different α- and β-subunits has to occur in a highly coordinate manner. In addition β-subunits are synthesized as proproteins and correct processing has to be guaranteed during complex maturation. The structure formation can be subdivided in different phases. The knowledge of the individual phases is summarized in this publication. As a first step the newly synthesized monomers have to adopt the correct tertiary structure, a process that might be supported in the case of the β-subunits by the intramolecular chaperone activity postulated for the prosequences. Subsequently the α-subunits form ring-like structures thereby providing docking sites for the different β-subunits. The result most likely is a double ring structure (13S precursor) representing half-proteasomes, which contain immature proproteins. Two 13S precursors associate to form the proteolytically inactive 16S assembly intermediate which still contains unprocessed β-monomers. In addition the chaperone Hsc73 is present within these particles suggesting an essential role during the structure formation process. The processing of monomers with an N-terminal threonine occurs within the 16S particles and is achieved autocatalytically by two subsequent processing events finally leading to the mature, active 20S proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshimura T, Kameyama T, Takagi T, Ikai, A, Tokunaga F, Koide T, Tanahashi N, Tamura T, Cejka Z, Baumeister W, Tanaka K & Ichihara A (1993) J. Struct. Biol. 111: 200—211

    Google Scholar 

  2. Hilt W & Wolf DH (1996) TIBS 21: 96—102

    Google Scholar 

  3. Coux O, Tanaka K & Goldberg AA (1996) Annu. Rev. Biochem. 65: 801—847

    Google Scholar 

  4. Hiller MM, Finger A, Schweiger M & Wolf DH(1996) Science 273: 1725—1728

    Google Scholar 

  5. Hough R, Pratt G & Rechsteiner M (1987) J. Biol. Chem. 262: 8303—8313

    Google Scholar 

  6. Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059—7061

    Google Scholar 

  7. Yang Y, Früh K, Ahn K & Peterson PA (1995) J. Biol. Chem. 270: 27687—27694

    Google Scholar 

  8. Dubiel W, Ferrel K & Rechsteiner M (1995) Mol. Biol. Rep. 21: 27—34

    Google Scholar 

  9. Hendil KB, Kristensen P & Uerkvitz W (1995) Biochem. J. 305: 245—252

    Google Scholar 

  10. Zwickl P, Lottspeich F & Baumeister W (1992) FEBS Lett. 312: 157—160

    Google Scholar 

  11. Wenzel T & Baumeister W (1995) Struct. Biol. 2: 199—204

    Google Scholar 

  12. Wenzel T & Baumeister W (1993) Febs Lett. 326: 215—218

    Google Scholar 

  13. Dick LR, Mooamaw CR, DeMartino GN & Slaughter CA (1991) Biochemistry 30: 2725—2734

    Google Scholar 

  14. Wenzel T, Eckerskorn C, Lottspeich F & Baumeister W (1994) FEBS Lett. 349: 205—209

    Google Scholar 

  15. Stein R L, Melandri F & Dick L (1996) Biochemistry 35: 3899—3908

    Google Scholar 

  16. Wilk S, Pereira M & Yu B (1991) Biomed. Biochim. Acta 50: 471—478

    Google Scholar 

  17. Groettrup M, Soza A, Kuckelkorn U & Kloetzel PM (1996a) Immunol. Today 17: 429—435

    Google Scholar 

  18. Groettrup M, Kraft R, Kostka S, Standera S, Stohwasser, R & Kloetzel PM (1996b) Eur. J. Immunol. 26: 863—869

    Google Scholar 

  19. Dubiel W, Pratt G, Ferrell K & Rechsteiner M, (1992) J. Biol. Chem. 267: 22 369—22 377

    Google Scholar 

  20. Ahn JY, Tanahashi N, Akiyama K—y, Hisamatsu H, Noda C, Tanaka K, Chung CH, Shibmara N, Willy PJ, Mott JD, Slaughter CA & DeMartino G, (1995) FEBS Lett. 366: 37—42

    Google Scholar 

  21. Peters JM, Cejka Z, Harris JR, Kleinschmidt JA & Baumeister W (1993) Mol. Biol. 234: 932—937

    Google Scholar 

  22. Gray CW, Slaughter CA & DeMartino GN (1994) J. Mol. Biol. 236: 7—15

    Google Scholar 

  23. Dahlmann B, Kuehn L, Kopp F, Niedel B, Reinauer H, Kloetzel P—M & Stauber WT (1989) In: Intracellular Proteolysis (pp 217—224), Japan Scientifique Society Press, Tokyo

    Google Scholar 

  24. Hegerl R, Pfeifer G, Pühler G, Dahlmann B & Baumeister W (1991) FEBS Lett 283: 117—121

    Google Scholar 

  25. Kopp F, Dahlmann B & Hendil KB (1993) J. Mol. Biol. 229: 14—19

    Google Scholar 

  26. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W & Huber R (1995) Science 268: 533—539

    Google Scholar 

  27. Stock D, Dietzel L, Baumeister W, Huber R & Löwe J (1995) in Cold Spring Harbour Symposia on Qualitative Biology (pp 525—532) Cold Spring Harbour Laboratory Press, Cold Spring Harbour

    Google Scholar 

  28. Brannigan JA, Dodson G, Duggleby HJ, Moody PCE, Smith JL, Tomchick DR & Murzin AG (1995) Nature 378: 416—419

    Google Scholar 

  29. Tiikanen R, Riikonen A, Oinonen C, Rouvinen J & Peltonen L (1996) EMBO J. 15: 2954—2960

    Google Scholar 

  30. Antson AA, Dodson EJ & Dodson GG (1996) Curr. Opin. Struct. Biol. 6: 142—150

    Google Scholar 

  31. Schmidt M & Buchner J (1992) J. Biol. Chem. 267: 16 829—16 833

    Google Scholar 

  32. Seemüller E, Lupas A, Stock D, Löwe J, Huber R & Baumeister W (1995) Science 268:579—582

    Google Scholar 

  33. Duggleby HJ, Tolley SP, Hill CP, Dodson E, Dodson G & Moody PCE (1995) Nature 373: 264—268

    Google Scholar 

  34. Smith JL, Zaluzec EJ, Wery JP, Niu L, Switzer RL, Zalkin H & Satow Y (1994) 264: 1427—1433

  35. Guan C, Cui T, Rao V, Liao W, Brenner J & Lin C—L (1996) J. Biol. Chem. 271: 1732—1737

    Google Scholar 

  36. Neurath H (1989) TIBS 14: 268—271

    Google Scholar 

  37. Phillips MA & Fletterick RJ (1992) Curr. Biol. 2: 713—720

    Google Scholar 

  38. Shinde U & Inouye M (1993) TIBS 18: 442—446

    Google Scholar 

  39. Seemüller E, Lupas A & Baumeister W (1996) Nature 382: 468—470

    Google Scholar 

  40. Chen P& Hochstrasser M (1996) Cell 86: 961—972

    Google Scholar 

  41. Schmidtke G, Kraft R, Kostka S, Henklein P, Frömmel C, Löwe J, Huber R, Kloetzel P—M & Schmidt M (1996) EMBO J. 15: 6887—6898

    Google Scholar 

  42. Chen P & Hochstrasser M (1995) EMBO J. 14: 2620—2630

    Google Scholar 

  43. Zwickl P, Kleinz J & Baumeister W (1994) Struct. Biol. 1: 765—770

    Google Scholar 

  44. Frentzel S, Pesold—Hurt B, Seelig A & Kloetzel P (1994) J. Mol. Biol. 236: 975—981

    Google Scholar 

  45. Thomson S & Rivett AJ (1996) Biochem. J. 315: 733—738

    Google Scholar 

  46. Matthews CR (1993) Annu. Rev. Biochem. 62: 653—683

    Google Scholar 

  47. Palleros DR, Shi L, Reid KL & Fink AL (1994) J. Biol. Chem. 269: 13 107—13 114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, M., Schmidtke, G. & Kloetzel, PM. Structure and structure formation of the 20S proteasome. Mol Biol Rep 24, 103–112 (1997). https://doi.org/10.1023/A:1006826725056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006826725056

Navigation