Skip to main content
Log in

A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

A bioassay and an empirically derived formula were developed to quantify fungitoxic effects. This bioassay can be easily performed and objectively read, and it is suitable for low-volume samples originating from aqueous or organic solvents. The formula defines the Inhibition Index (I), a single value that incorporates both the response to concentrations of the inhibitory compound and the persistence of inhibition. Antagonistic efficacy of metabolites produced by biocontrol strains of Trichoderma spp. were measured based on inhibition of growth of Rhizoctonia solani. Although the bioassay itself was not influenced by pH or light conditions, these factors affected metabolite production or activity. Aqueous extracts from light-grown germlings of Trichoderma virens inhibited R. solani more than extracts from germlings grown in the dark. Low pH increased the inhibitory activity of extracts from T. virens. Tests of fungal strains developed for biocontrol demonstrated that the bioassay reflected their activity both in the field and in other in vitro tests. The bioassay and formula are readily adapted for use with other fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spurr H. Bioassays - critical to biocontrol of plant disease. J Agricult Entomol 1985; 2: 117-122.

    Google Scholar 

  2. Kenerley CM, Stack JP. Influence of assessment methods on selection of fungal antagonists of the sclerotium-forming fungus Phymatotrichum omnivorum. Can J Microbiol 1987; 33: 632-635.

    Article  Google Scholar 

  3. Singh J, Faull JL. Antagonism and biological control. In: Mukerji KG, Garg KL, eds. Biocontrol of plant diseases Vol II. Boca Raton, Florida: CRC Press, 1988: 167-177.

    Google Scholar 

  4. Turhan G, Grossmann F. Antifungal and antibacterial activity of Acrophialophora levisSamson and Tariq Mahmood. J Phytopathol 1989; 124: 200-206.

    Google Scholar 

  5. Vanachter A, Wambeke E van, Assche C van. In vitroevaluation of the antagonistic properties of Trichodermaspp. against Pyrenochaeta lycopersiciand Phomopsis sclerotioides. Bulletin OEPP/EPPO Bulletin 1988; 18: 1–7.

    Google Scholar 

  6. Whipps JM. Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol 1987; 107: 127-142.

    Article  Google Scholar 

  7. Whipps JM. Behaviour of fungi antagonistic to Sclerotinia sclerotiorumon plant tissue segments. J Gen Microbiol 1987; 133: 1495-1501.

    Google Scholar 

  8. Piddock LJV. Techniques used for the determination of antimicrobial resistance and sensitivity in bacteria. J Appl Bacteriol 1990; 68: 307-318.

    CAS  PubMed  Google Scholar 

  9. Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 1990; 69: 55-60.

    Article  CAS  Google Scholar 

  10. Gerke JR, Levin JD, Pagano JF. Antibiotic substances, part II: antifungal assays. In: Kavanagh F, ed. Analytical microbiology. New York: Academic Press, 1963: 387-413.

    Google Scholar 

  11. Ludwig A, Boller T. A method for the study of fungal growth inhibition by plant proteins. FEMS Microbiol Lett 1990; 69: 61-66.

    Article  CAS  Google Scholar 

  12. Pfaller MA, Barry AL. In vitro susceptibilities of clinical yeast isolates to three antifungal agents determined by the microdilution method. Mycopathologia 1995; 130: 3-9.

    Article  CAS  PubMed  Google Scholar 

  13. Sawant AD, Abdelal AT, Ahearn DG. Anti-Candida albicansactivity of Pichia anomalaas determined by a growth rate reduction assay. Appl and Environ Microbiol 1988; 54: 1099- 1103.

    CAS  Google Scholar 

  14. Caire GZ de, Cano MS de, Mulé MCZ de, Halperin DR de, Galvagno M. Action of cell-free extracts and extracellular products of Nostoc muscorumon growth of Sclerotinia sclerotiorum. Phyton 1987; 47: 43-46.

    Google Scholar 

  15. Khan TA, Husain SI. In vitrostudies on the toxicity of culture filtrates of different fungi on the growth of Rhizoctonia solani. New Agriculturist 1991; 1: 107-110.

    Google Scholar 

  16. Marwan AG, Nagel CW. Quantitative determination of infinite inhibition concentrations of antimicrobial agents. Appl Environ Microbiol 1986; 51: 559-561.

    CAS  PubMed  Google Scholar 

  17. Lewis JA, Papavizas GC. Permeability changes in hyphae of Rhizoctonia solaniinduced by germling preparations of Trichodermaand Gliocladium. Phytopathology 1987; 77: 699-703.

    Article  Google Scholar 

  18. Lewis JA, Papavizas GC. Biocontrol of cotton damping-off caused by Rhizoctonia solaniin the field with formulations of Trichodermaspp. and Gliocladium virens. Crop Protect 1991; 10: 396-402.

    Article  Google Scholar 

  19. Keinath AP, Fravel DR, Papavizas GC. Potential ofGliocladium roseumfor biocontrol of Verticillium dahliae. Phytopathology 1991; 81: 644-648.

    Article  Google Scholar 

  20. Brian PW, Curtis PJ, Hemming HG, Mcgowan JC. The production of viridin by pigment-forming strains of Trichoderma viride. Ann Appl Biol 1946; 33: 190-200.

    Article  Google Scholar 

  21. Johnson JR, Bruce WF, Dutcher JD. Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. I. Production, physical and biological properties. J Am Chem Soc 1943; 65: 2005- 2009.

    Article  CAS  Google Scholar 

  22. Howell CR, Stipanovic RD. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Can J Microbiol 1983; 29: 321-324.

    Article  CAS  Google Scholar 

  23. Jones RW, Hancock JG. Conversion of viridin to viridiol by viridin-producing fungi. Can J Microbiol 1987; 33: 963-966.

    Article  CAS  PubMed  Google Scholar 

  24. Stipanovic RD, Howell CR. The x-ray crystal structure determination, and biosynthetic studies of the antibiotic, heptelidic acid. Tetrahedron 1983; 39: 1103-1107.

    Article  CAS  Google Scholar 

  25. Globus GA, Muromtsev GS. The use of Gliocladium roseumas antagonist for defence of cotton from fitopathogenic fungi. Proceedings 5th International VerticilliumSymposium. Leningrad, 1990: 90.

  26. Roberts M, Boyce CBC. Principles of biological assay. In: Norris JR, Ribbons DW, eds. Methods in microbiology Vol 7A. New York: Academic Press, 1972: 153-190.

    Google Scholar 

  27. Roberts DP, Lumsden RD. Effect of extracellular metabolites from Gliocladium virenson germination of sporangia and mycelial growth of Pythium ultimum. Phytopathology 1990; 80: 461-465.

    Article  CAS  Google Scholar 

  28. Lumsden RD, Ridout CJ, Vendemia ME, Harrison DJ, Waters RM, Walter JF. Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens. Can J Microbiol 1992; 38: 1274-1280.

    Article  CAS  Google Scholar 

  29. Kumagai T. Photocontrol of fungal development. Photochem Photobiol 1988; 47: 889-896.

    Article  CAS  PubMed  Google Scholar 

  30. Horwitz BA, Gressel J, Malkin S, Epel BL. Modified cryptochrome in in vivoabsorption in dimphotosporulation mutants of Trichoderma. Proc Natl Acad Sci USA 1985; 82: 2736- 2740.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma IK, Heather WA. Temperature-light intensity effect on the antagonism of species of Cladosporiumto Melampsora larici-populinaon cultivars of Populus x euramericana(Dode) Guinier. J Phytopathol 1987; 120: 158-165.

    Article  Google Scholar 

  32. Grešík M, Kolarova N, Farkaš V. Hyperpolarization and intracellular acidification in Trichoderma virideas a response to illumination. J Gen Microbiol 1991; 137: 2605-2609.

    PubMed  Google Scholar 

  33. Askew DJ, Laing MD. The in vitro screening of 118 Trichodermaisolates for antagonism to Rhizoctonia solaniand an evaluation of different environmental sites of Trichodermaas sources of aggressive strains. Plant Soil 1994; 159: 277-281.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mischke, S. A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi. Mycopathologia 137, 45–52 (1997). https://doi.org/10.1023/A:1006814521872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006814521872

Navigation