Skip to main content
Log in

The Role of Probabilistic Approaches to Transport Theory in Heterogeneous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A physical picture of contaminant transport in highly heterogeneous porous media is presented. In any specific formation the associated governing transport equation is valid at any time and space scale. Furthermore, the advective and dispersive contributions are inextricably combined. The ensemble average of the basic transport equation is equivalent to a continuous time random walk (CTRW). The connection between the CTRW transport equation, in a limiting case and the familiar advection–dispersion equation (ADE) is derived. The CTRW theory is applied to the results of laboratory experiments, field observations, and simulations of random fracture networks. All of these results manifest dominant non-Gaussian features in the transport, over different scales, which are accounted for quantitatively by the theory. The key parameter β controlling the entire shape of the contaminant plume evolution and breakthrough curves is advanced as a more useful characterization of the transport than the dispersion tensor, which is based on moments of the plume. The role of probabilistic approaches, such as CTRW, is appraised in the context of the interplay of spatial scales and levels of uncertainty. We then discuss a hybrid approach, which uses knowledge of non-stationary aspects of a field site on a larger spatial scale (trends) with a probabilistic treatment of unresolved structure on a smaller scale (residues).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, E. E. and Gelhar, L.W.: 1992, Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water Resour. Res. 28(12), 3293-3308.

    Google Scholar 

  • Berkowitz, B. and Scher, H.: 1995, On characterization of anomalous dispersion in porous and fractured media, Water Resour. Res. 31(6), 1461-1466.

    Google Scholar 

  • Berkowitz, B. and Scher, H.: 1997, Anomalous transport in random fracture networks, Phys. Rev. Lett. 79(20), 4038-4041.

    Google Scholar 

  • Berkowitz, B. and Scher, H.: 1998, Theory of anomalous chemical transport in fracture networks, Phys. Rev. E 57(5), 5858-5869.

    Google Scholar 

  • Berkowitz, B., Scher, H. and Silliman, S. E.: 2000, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resour. Res. 36(1), 149-158.

    Google Scholar 

  • Compte, A.: 1996, Stochastic foundations of fractional dynamics, Phys. Rev. E 53(4), 4191-4193.

    Google Scholar 

  • Compte, A.: 1997, Continuous time random walks on moving fluids, Phys. Rev. E 55(6), 6821-6831.

    Google Scholar 

  • Copson, E. T.: 1965, Asymptotic Expansions, Cambridge University Press, Cambridge.

    Google Scholar 

  • Dagan, G. and Neuman, S. P. (eds): 1997, Subsurface Flow and Transport A Stochastic Approach, Cambridge University Press, New York.

    Google Scholar 

  • Eggleston, J. and Rojstaczer, S.: 1998, Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport, Water Resour. Res. 34(9), 2155-2168.

    Google Scholar 

  • Gelhar, L.W.: 1993, Stochastic Subsurface Hydrology, Prentice-Hall, Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • Grindrod, P. and Impey, M. D.: 1993, Channeling and Fickian dispersion in fractal simulated porous media, Water Resour. Res. 29(12), 4077-4089.

    Google Scholar 

  • Haggerty, R. and Gorelick, S. M.: 1998, Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity, Water Resour. Res. 31(10), 2383-2400.

    Google Scholar 

  • Hatano, Y. and Hatano, N.: 1998, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles, Water Resour. Res. 34(5), 1027-1033.

    Google Scholar 

  • Hilfer, R. and Anton, L.: 1995, Fractional master equations and fractal time random walks, Phys. Rev. E 551(2), R848-R851.

    Google Scholar 

  • Kenkre, V. M., Montroll, E. W. and Shlesinger, M. F.: 1973, Generalized master equations for continuous-time random walks, J. Stat. Phys. 9(1), 45-50.

    Google Scholar 

  • Klafter, J. and Silbey, R.: 1980, Derivation of continuous-time random-walk equations, Phys. Rev. Lett. 44(2), 55-58.

    Google Scholar 

  • Kinzelbach, W.: 1988, The random walk method in pollutant transport simulation, in: E. Custodio, A. Gurgui and J. P. Lobo Ferreria (eds), D. Reidel, Norwell,Mass., Groundwater Flow and Quality Modelling, NATO ASI Ser., Ser. C Math and Phys. Sci., Vol. 224, pp. 227-246.

    Google Scholar 

  • LaBolle, E. M., Quastel, J. and Fogg, G. F.: 1998, Diffusion theory for transport in porous media: Transition probability densities of diffusion processes corresponding to advection-dispersion equations, Water Resour. Res. 34(7), 1685-1693

    Google Scholar 

  • Liu, H. H. and Molz, F. J.: 1997, Multifractal analyses of hydraulic conductivity distributions, Water Resour. Res. 33(11), 2483-2488.

    Google Scholar 

  • Matheron, G. and de Marsily, G.: 1980, Is transport in porous media always diffusive? A counter example, Water Resour. Res. 16(5), 901-917.

    Google Scholar 

  • McLean, F. B. and Ausman, G. A., Jr.: 1977, Simple approximate solutions to continuous-time random-walk transport, Phys. Rev. B 15(2), 1052-1061.

    Google Scholar 

  • Metzler, R., Glöckle, W. G. and Nonnenmacher, T. F.: 1994, Fractional model equation for anomalous diffusion, Physica A 211, 13-24.

    Google Scholar 

  • Metzler, R., Klafter, J. and Sokolov, I. M.: 1998, Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended, Phys. Rev. E 58(2), 1621-1633.

    Google Scholar 

  • Montroll, E. W. and Scher, H.: 1973, Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries, J. Stat. Phys. 9(2), 101-135.

    Google Scholar 

  • Oppenheim, I., Shuler, K. E. and Weiss, G. H.: 1977, The Master Equation, MIT Press, Cambridge.

    Google Scholar 

  • Painter, S.: 1996, Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary formations, Water Resour. Res. 32(5) 1183-1195.

    Google Scholar 

  • Prickett, T. A., Naymik, T. G. and Lonnquist, C. G.: 1981, A random walk solute transport model for selected groundwater quality evaluations, Bull. Ill. State Water Surv. 65, Champaign.

  • Scher, H. and Lax, M.: 1973, Stochastic transport in a disordered solid, I. Theory, Phys. Rev. B 7(10), 4491-4502.

    Google Scholar 

  • Scher, H. and Montroll, E. W.: 1975, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12(6), 2455-2477.

    Google Scholar 

  • Scher, H., Shlesinger, H. F. and Bendler, J. T.: 1991, Time-scale invariance in transport and relaxation, Physics Today January, 26-34.

  • Shlesinger, M. F.: 1974, Asymptotic solutions of continuous-time random walks, J. Stat. Phys. 10(5), 421-434.

    Google Scholar 

  • Shlesinger, M. F.: 1996, Random Processes, in Encyclopedia of Applied Physics, Vol. 16, VCH Publishers, Inc., New York.

    Google Scholar 

  • Shlesinger, M. F., Klafter, J. and Wong, Y. M.: 1982, Random walks with infinite spatial and temporal moments, J. Stat. Phys. 27(3), 499-512.

    Google Scholar 

  • Silliman, S. E. and Simpson, E. S.: 1987, Laboratory evidence of the scale effect in dispersion of solutes in porous media, Water Resour. Res. 23(8), 1667-1673.

    Google Scholar 

  • Silliman, S. E., Konikow, L. F. and Voss, C. I.: 1987, Laboratory investigation of longitudinal dispersion in anisotropic porous media, Water Resour. Res. 23(11), 2145-2151.

    Google Scholar 

  • Uffink, G. J. M.: 1985, A random walk method for the simulation of macrodispersion in a stratified aquifer, in: Relation of Groundwater Quality and Quantity, IAHS Publ. 146, Int. Assoc. of Hydro. Sci., Gentbrugge, Belgium, pp. 103-114.

    Google Scholar 

  • Zumofen, G., Klafter, J. and Blumen, A.: 1991, Trapping aspects in enhanced diffusion, J. Stat. Phys. 65(5/6), 991-1013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkowitz, B., Scher, H. The Role of Probabilistic Approaches to Transport Theory in Heterogeneous Media. Transport in Porous Media 42, 241–263 (2001). https://doi.org/10.1023/A:1006785018970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006785018970

Navigation