Skip to main content
Log in

Application of Nuclear Chemistry in the Study of the Universe

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Isotopic compositions of the strange Xenon components-HL and the s-type xenon can be explained in a straightforward manner as due to the alteration of the isotopic composition of xenon caused by a combined effect of (a) mass-fractionation, (b) spallation and (c) stellar-temperature neutron-capture reactions. As much as 42.49% of total 136Xe (Σ 136Xe) found in the Allende diamond inclusions is 244Pu fission xenon (136fXe) and the trapped xenon is severely mass-fractionated in such a manner that the lighter xenon isotopes are systematically depleted relative to the heavier isotopes. The relative abundances of 130Xe and 132Xe in the trapped xenon component are both markedly enhanced indicating that it was irradiated with a total flux of 1.2·1023 n·cm-2 of stellar-temperature (10 keV) neutrons. The xenon found in the s-type xenon, on the other hand, resemble that of the atmospheric xenon irradiated with a total flux of about 6.0·1023 n·cm-2 of 10 keV neutrons. These results indicate that we are seeing here the effects of nuclear processes occurring inside of a star, such as the exploding supernova.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle, Rev. Mod. Phys., 29 (1957) 547.

    Google Scholar 

  2. J. H. Reynolds, Phys. Rev. Lett., 4 (1960) 8.

    Google Scholar 

  3. P. K. Kuroda, Nature, 187 (1960) 36.

    Google Scholar 

  4. J. H. Reynolds, J. Geophys. Res., 68 (1963) 2939.

    Google Scholar 

  5. A. G. W. Cameron, Icarus, 1 (1962) 13.

    Google Scholar 

  6. J. H. Reynolds, G. Turner, J. Geophys. Res., 69 (1964) 3263.

    Google Scholar 

  7. M. W. Rowe, P. K. Kuroda, J. Geophys. Res., 70 (1965) 709.

    Google Scholar 

  8. J. H. Reynolds, C. M. Hohenberg, R. S. Lewis, P. K. Davis, W. A. Kaiser, Science, 167 (1970) 545.

    Google Scholar 

  9. P. K. Kuroda, Nature Phys. Sci., 230 (1971) 40.

    Google Scholar 

  10. H. Funk, F. Podosek, M. W. Rowe, Geochim. Cosmochim. Acta, 31 (1967).

  11. O. K. Manuel, E. W. Hennecke, D. D. Sabu, Nature Phys. Sci., 240 (1972) 99.

    Google Scholar 

  12. B. Srinivasan, E. Anders, T. B. Draine, Science, 201 (1978) 51.

    Google Scholar 

  13. R. S. Lewis, E. Anders, T. B. Draine, Nature, 339 (1989) 3273.

    Google Scholar 

  14. E. Zinner, M. Tang, E. Anders, Geochim. Cosmochim. Acta, 53 (1989) 3273.

    Google Scholar 

  15. A. O. Nier, Phys. Rev., 79 (1950) 450.

    Google Scholar 

  16. G. R. Huss, R. S. Lewis, Meteoritics, 29 (1994) 791.

    Google Scholar 

  17. R. S. Lewis, S. Amari, E. Anders, Geochim. Cosmochim. Acta, 58 (1994) 471.

    Google Scholar 

  18. P. K. Kuroda, Radiochim. Acta, 62 (1993) 27.

    Google Scholar 

  19. E. Anders, E. Zinner, Meteoritics, 28 (1993) 490.

    Google Scholar 

  20. P. K. Kuroda, W. A. Myers, to be presented at the Symposium on The Origin of Chemical Elements in the Solar System, held in New Orleans, August 22–26, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, P.K. Application of Nuclear Chemistry in the Study of the Universe. Journal of Radioanalytical and Nuclear Chemistry 243, 141–145 (2000). https://doi.org/10.1023/A:1006783701207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006783701207

Keywords

Navigation