Surveys in Geophysics

, Volume 21, Issue 1, pp 47–87 | Cite as

Geomagnetic Storm Effects on the Topside Ionosphere and Plasmasphere: A Compact Tutorial and New Results

  • Matthias Förster
  • Norbert Jakowski


The coupled ionosphere–thermosphere–plasmasphere system is very complex. The study of its interrelationships during geomagnetically disturbed conditions is an especially challenging task.Significant progress has been achieved during the last few years in developing comprehensive theoretical models to describe its global behaviour.Moreover, more simple, specialized numerical modelling of some specialaspects of storm behaviour and/or regional models have contributedto the progress in this field.This paper summarizes recent developments in upper ionosphereand plasmasphere storm studies and modelling.From an observational point of view the upper ionosphere/plasmasphereregion is well reflected in radio beacon measurements providing the totalelectron content (TEC). The development of space-based radio navigation systems such as GPS offersnew opportunities to derive TEC on both regional and global scale.Combining TEC with ionosonde data enables the variability of the shape of the electron density distribution during storms to be studied.We present some examples of co-ordinated investigation,made during the CEDAR storm study intervals.

geomagnetic storms upper ionosphere plasmasphere modelling total electron content remote sensing near-earth satellite in-situ measurements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afonin, V.V., Grechnev, K.V., Ershova, V.A., Roste, O.Z., Smirnova, N.F., Shultschishin, J.A., and Smilauer, J.: 1994, ‘The ion composition and ionosphere temperatures in the maximum of 22nd cycle of solar activity as measured on board of ‘Intercosmos-24’ (project Active) satellite’, Kosm. Issled. 32, 82–94. (in Russian).Google Scholar
  2. Alfvén, H. and Fälthammar, C.-G.: 1963, Cosmical Electrodynamics - Fundamental Principles, Oxford University Press, London.Google Scholar
  3. Anderson, D.N., Buonsanto, M.J., Codrescu, M.V., Decker, D., Fesen C.-G., Fuller-Rowell, T.J., Reinisch, B.W., Richards, P.G., Roble, R.G., Schunk, R.W., and Sojka, J.J.: 1998, ‘Intercomparison of physical models and observations of the ionosphere’, J. Geophys. Res. 103, 2179–2192.Google Scholar
  4. Bailey, G.J.: 1978, ‘Interhemispheric flow of thermal plasma in a closed magnetic flux tube at midlatitudes under sunspot minimum conditions’, Planet. Space Sci. 26, 753–765.Google Scholar
  5. Bailey, G.J., Balan, N., and Su, Y.Z.: 1997, ‘The Sheffield University plasmasphere ionosphere model - a review’, J. Atmos. Solar-Terr. Phys. 59, 1541–1552.Google Scholar
  6. Balan, N. and Rao, P.B.: 1990, ‘Dependence of ionospheric response on the local time of sudden commencement and the intensity of geomagnetic storms’, J. Atmos. Terr. Phys. 52, 269–275.Google Scholar
  7. Barlier, F., Berger, C., Falin, J.L., Kockarts, G., and Thullier, G.: 1978, ‘A thermospheric model based on satellite drag data’, Ann. Geophys. 34, 9–24.Google Scholar
  8. Baumjohann, W. and Treumann, R.A.: 1996, Basic Space Plasma Physics, Imperial College Press, London.Google Scholar
  9. Benson, R.F., Reinisch, B.W., Green, J.L., Bougeret, J.-L., Calvert, W., Carpenter, D.L., Fung, S.F., Gallagher, D.L., Haines, D.M., Manning, R., Reiff, P.H., and Taylor, W.W.L.: 1998, ‘Magnetospheric radio sounding on the IMAGE mission’, Radio Sci. Bull. 285, 9–20.Google Scholar
  10. Bilitza, D., Rawer, K., Bossy, L., and Gulyaeva, T.: 1993, ‘International reference ionosphere - past, present, future’, Adv. Space Res. 13, 3–23.Google Scholar
  11. Blanc, M.: 1978, ‘Mid-latitude convection electric fields and their relation to ring current development’, Geophys. Res. Lett. 5, 203–206.Google Scholar
  12. Blanc, M.: 1983, ‘Magnetospheric convection effects at mid-latitudes, 3. Theoretical derivation of the disturbance convection pattern in the plasmasphere’, J. Geophys. Res. 88, 235–245.Google Scholar
  13. Blanc, M. and Richmond, A.D.: 1980, ‘The ionospheric disturbance dynamo’, J. Geophys. Res. 85, 1669–1686.Google Scholar
  14. Bremer, J.: 1998, ‘Trends in the ionospheric E and F regions over Europe’, Ann. Geophys. 16, 986–996.Google Scholar
  15. Buonsanto, M.: 1986, ‘Seasonal variations of day-time ionisation flows inferred from a comparison of calculated and observed NmF2’, J. Atmos. Terr. Phys. 48, 365–373.Google Scholar
  16. Buonsanto, M., Foster, J., and Sipler, D.: 1992, ‘Observations from Millstone Hill During the geomagnetic disturbances of March and April 1990’, J. Geophys. Res. 97, 1225–1243.Google Scholar
  17. Buonsanto, M.J., Codrescu, M.V., Emery, B.A., Fesen, C.G., Fuller-Rowell, T.J., Melendez-Alvira, D.J., and Sipler, D.P.: 1997, ‘Comparison of models and measurements at Millstone Hill during the January 24-26, 1993, minor storm interval’, J. Geophys. Res. 102, 7267–7278.Google Scholar
  18. Burns, A.G., Killeen, T.J., Carignan, G.R., and Roble, R.G.: 1995, ‘Large enhancements in the O/N 2 ratio in the evening sector of the winter hemisphere during geomagnetic storms’, J. Geophys. Res. 100, 14,661–14,671.Google Scholar
  19. Burnside, R.G., Tepley, C.A., Sulzer, M.P., Fuller-Rowell, T.F., Torr, D.G., and Roble, R.G.: 1991, ‘The neutral thermosphere at Arecibo during geomagnetic storms’, J. Geophys. Res. 96, 1289–1301.Google Scholar
  20. Burrage, M.D., Abreu, V.J., Orsini, N., Fesen, C.G., and Roble, R.G.: 1992, ‘Geomagnetic activity effects on the equatorial neutral thermosphere’, J. Geophys. Res. 97, 4177–4187.Google Scholar
  21. Carpenter, D.L. and Anderson, R.R.: 1992, ‘The ISEE/whistler model of equatorial electron density in the magnetosphere’, J. Geophys. Res. 97, 1097.Google Scholar
  22. Carpenter, D.L. and Lemaire, J.: 1997, ‘Erosion and recovery of the plasmasphere in the plasmapause region’, Space Science Reviews 80, 153–179.Google Scholar
  23. Carpenter, D.L. and Park, C.G.: 1963, ‘Whistler evidence of a “knee” in the magnetospheric ionization density profile’, J. Geophys. Res. 68, 1675–1682.Google Scholar
  24. Carpenter, D.L. and Park, C.G.: 1973, ‘On what ionospheric workers should know about the plasmapause-plasmasphere’, Rev. Geophys. Space Phys. 11, 133–154.Google Scholar
  25. Chapman, S. and Cowling, T.G.: 1970, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, Cambridge.Google Scholar
  26. Chapman, S. and Lindzen, R.S.: 1970, Atmospheric Tides, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  27. Clilverd, M.A., Clark, T.D.G., Clarke, E., and Rishbeth, H.: 1998, ‘Increased magnetic storm activity from 1868 to 1995’, J. Atmos. Solar-Terr. Phys. 60, 1047–1056.Google Scholar
  28. Cowley: 1996, ‘The auroral ionosphere and its coupling to the magnetosphere and solar wind’, in H. Kohl, R. Rüster, and K. Schlegel (eds.), Modern Ionospheric Science, European Geophysical Society, Katlenburg-Lindau, Germany, pp. 32–66.Google Scholar
  29. Crosby, N., Daly, E., and Hilgers, A. (eds.): 1998, ‘Workshop on Space Weather’, WPP-155, Noordwijk, The Netherlands: ESA-ESTEC.Google Scholar
  30. Crowley, G., Emery, B.A., Roble, R.G., Carlson Jr. H.C., and Knipp, D.J.: 1989, ‘Thermospheric dynamics during September 18-19, 1984, 1. Model simulations’, J. Geophys. Res. 94, 16,925–16,944.Google Scholar
  31. Danilov, A.D. and Mikhailov, A.V.: 1999, ‘Spatial and seasonal variations of the foF2 long-term trends’, Ann. Geophys. 17, 1239–1243.Google Scholar
  32. Danilov, A.D. and Morozova, L.D.: 1985, ‘Ionospheric storms in the F2-region. Morphology and Physics (Review)’. Geomagn. Aeron. (Engl. translation) 25, 593–605.Google Scholar
  33. Davies, K., Anderson, D.N., Paul, A.K., Degenhardt, W., Hartmann, G.K., and Leitinger, R.: 1979, ‘Nighttime increase in total electron content observed with the ATS 6 radio beacon’, J. Geophys. Res. 84, 1536–1542.Google Scholar
  34. Davies, K. and Hartmann, G.K.: 1997, ‘Studying the ionosphere with the global positioning system’, Radio Sci. 84, 1695–1703.Google Scholar
  35. Davies, K., Hartmann, G.K., and Leitinger, R.: 1977, ‘A comparison of several methods of estimating the columnar electron content of the plasmasphere’, J. Atmos. Terr. Phys. 39, 571–580.Google Scholar
  36. Degenhardt, W., Hartmann, G.K., and Leitinger, R.: 1979, ‘Effects of a magnetic storm on the plasmaspheric electron content’, J. Atmos. Terr. Phys. 39, 1435–1440.Google Scholar
  37. Dickinson, R.E., Ridley, E.C., and Roble, R.G.: 1981, ‘A three-dimensional general circulation model of the thermosphere’, J. Geophys. Res. 86, 1499–1512.Google Scholar
  38. Dickinson, R.E., Ridley, E.C., and Roble, R.G.: 1984, ‘Thermospheric general circulation with coupled dynamics and composition’, J. Atmos. Sci. 41, 205–219.Google Scholar
  39. Emery, B., Lu, G., Szuszczewicz, E., Richmond, A., Roble, R., Richards, P., Miller, K., Niciejewski, R., Evans, D., Rich, F., Denig, W., Chenette, D., Wilkinson, P., Pulinets, S., O'Loughlin, K., Hanbaba, R., Abdu, M., Jiao, P., Igarashi, K., and Reddy, B.: 1996, ‘Assimilative mapping of ionospheric electrodynamics in the thermosphere-ionosphere general circulation model comparisons with global ionospheric and thermospheric observations during the GEM/SUNDIAL period of March 28-29, 1992’, J. Geophys. Res. 101, 26,681–26,696.Google Scholar
  40. Essex, E.A. and Klobuchar, J.A.: 1980, ‘Mid-Latitude Winter nighttime increases in total electron content of the ionosphere’, J. Geophys. Res. 85, 6011–6020.Google Scholar
  41. Evans, J.: 1971, ‘Observation of F region vertical velocities at Millstone Hill, 1. Evidence for drifts due to expansion, contraction, and winds’, Radio Sci. 6, 609–626.Google Scholar
  42. Evans, J.: 1973, ‘Seasonal and sunspot cycle variations of F region electron temperatures and protonospheric heat fluxes’, J. Geophys. Res. 78, 2344–2349.Google Scholar
  43. Evans, J.: 1975, ‘A study of F2 region night-time vertical ionization fluxes at Millstone Hill’, Planet. Space Sci. 23, 1611–1623.Google Scholar
  44. Farrugia, C.J., Young, D.T., Geiss, J., and Balsiger, H.: 1989, ‘The composition, temperature, and density structure of cold ions in the quiet terrestrial plasmasphere: GEOS 1 results’, J. Geophys. Res. 94, 11,865–11,891.Google Scholar
  45. Fejer, B.G.: 1997, ‘The electrodynamics of the low-latitude ionosphere: recent results and future challenges’, J. Atmos. Solar-Terr. Phys. 59, 1465–1482.Google Scholar
  46. Fejer, B.G. and Scherliess, L.: 1995, ‘Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances’, Geophys. Res. Lett. 22, 851–854.Google Scholar
  47. Fesen, C.G., Emery, B.A., Buonsanto, M.J., Zhou, Q.H., and Sulzer, M.P.: 1997, ‘Simulationsof the F region during the January 1993 10-day campaign’, J. Geophys. Res. 102(A4), 7249–7265.Google Scholar
  48. Field, P.R., Rishbeth, H., Moffett, R.J., Idenden, D.W., Millward, G.H., and Aylward, A.D.: 1998, ‘Modelling composition changes in F-layer storms’, J. Atmos. Solar-Terr. Phys. 60, 523–543.Google Scholar
  49. Förster, M.: 1991, ‘Plasmatransport im gekoppelten System Ionosphäre-Plasmasphäre für mittlere Breiten’, Kleinheubacher Berichte 34, 421–432.Google Scholar
  50. Förster, M., Foster, J.C., Smilauer, J., Kudela, K., and Mikhailov, A.V.: 1999a, ‘Simultaneous measurements from the Millstone Hill radar and the active satellite during the SAID/SAR arc event of the March 1990 CEDAR Storm’, Ann. Geophys. 17, 389–404.Google Scholar
  51. Förster, M. and Jakowski, N.: 1986, ‘Interhemispheric ionospheric coupling at the merican sector during low solar activity II. Modelling’, Gerlands Beitr. Geophysik. 95, 228.Google Scholar
  52. Förster, M. and N. Jakowski, N.: 1988, ‘The nighttime winter anomaly (NWA) effect in the American sector as a consequence of interhemispheric ionospheric coupling’, PAGEOPH 127, 447–471.Google Scholar
  53. Förster, M., Jakowski, N., Best, A., and Smilauer, J.: 1992, ‘Plasmaspheric response to the geomagnetic storm period March 20-23, 1990, observed by the Activity (Magion-2) satellite’, Can. J. Phys. 70, 569–574.Google Scholar
  54. Förster, M. and Mikhailov, A.V.: 1999, ‘Der CEDAR-Sturm vom März 1990 als Modellstudie ionosphärisch-magnetosphärischer Prozesse’, Kleinheubacher Berichte 42, 47–54.Google Scholar
  55. Förster, M., Namgaladze, A.A., and Yurik, R.Y.: 1999b, ‘Thermospheric composition changes deduced from geomagnetic storm modeling’, Geophys. Res. Lett. 26, 2625–2628.Google Scholar
  56. Foster, J.C., Buonsanto, M.J., Mendillo, M., Nottingham, D., Rich, F.J., and Denig, W.: 1994, ‘Coordinated stable auroral red arc observations: Relationship to plasma convection’, J. Geophys. Res. 99, 11,429–11,439.Google Scholar
  57. Fuller-Rowell, T.J., Codrescu, M.V., Moffett, R.J., and Quegan, S.: 1994, ‘Response of the thermosphere and ionosphere to geomagnetic storms’, J. Geophys. Res. 99, 3893–3914.Google Scholar
  58. Fuller-Rowell, T.J. and Rees, D.: 1980, ‘A three-dimensional time-dependent global model of the thermosphere’, J. Atmos. Sci. 37, 2545–2567.Google Scholar
  59. Fuller-Rowell, T.J. and Rees, D.: 1983, ‘Derivation of a conservation equation for a mean molecular weight for a two-constituent gas within a three-dimensional, time-dependent model of the thermosphere’, Planet. Space Sci. 31, 1209–1222.Google Scholar
  60. Fuller-Rowell, T.J., Rees, D., Quegan, S., Moffett, R.J., and Bailey, G.J.: 1987, ‘Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere-thermosphere model’, J. Geophys. Res. 92, 7744–7748.Google Scholar
  61. Fuller-Rowell, T.J., Rees, D., Quegan, S., Moffett, R.J., and Bailey, G.J.: 1988, ‘Simulation of the seasonal and universal time variations of the high-latitude thermosphere and ionosphere using a coupled three-dimensional model’, Pure Appl. Geophys. 127, 189–218.Google Scholar
  62. Fuller-Rowell, T.J., Rees, D., Rishbeth, H., Burns, A.G., Killeen, T.L., and Roble, R.G.: 1991, ‘The composition change theory of F-region storms: A reassessment’, J. Atmos. Terr. Phys. 53, 797- 815.Google Scholar
  63. Gallagher, D.L., Craven, P.D., and Comfort, R.H.: 1988, ‘An empirical model of the Earth' plasmasphere’, Adv. Space Res. 8(8), 15–24.Google Scholar
  64. Galperin, Y.I., Ponomarev, V.N., Ponomarev, Y.N., and Zosimova, A.G.: 1975, ‘Plasma convection in the evening sector of the magnetosphere and the nature of the plasmapause (in Russian)’, Kosm. Issled. 13, 669–686.Google Scholar
  65. Gombosi, T.I.: 1998, Physics of the Space Environment, Cambridge University Press.Google Scholar
  66. Gringauz, K.I.: 1963, ‘The structure of the ionized gas envelope of Earth from direct measurements in the USSR of the local charged particles concentrations’, Planetary and Space Science 11, 281–294.Google Scholar
  67. Gringauz, K.I., Kurt, V.G., Moroz, V.I., and Shklovsky, I.: 1960, ‘Results of observations of charged particles observed out to 100,000 km with the aid of charged particle traps on Soviet space probes (in Russian)’, Astron. Zhurnal 37, 716–735. English Translation: Sov. Astron. J. 4, 680-695 (1961).Google Scholar
  68. Hajj, G.A. and Romans, L.J.: 1998, ‘Ionospheric electron density profiles obtained with the Global Positioning System: Results from the GPS/MET experiment’, Radio Sci. 33, 175–190.Google Scholar
  69. Hargreaves, J.K.: 1980, ‘The effects of geophysical disturbance on the nighttime behaviour of the electron content of the mid-latitude plasmasphere’, Radio Sci. 15, 595–604.Google Scholar
  70. Hargreaves, J.K. and Hunsucker, R.D.: 1981, ‘Night-time enhancements of ionospheric electron content at L = 4 during substorms’, Geophys. Res. Lett. 8, 815–818.Google Scholar
  71. Hedin, A.E.: 1987, ‘MSIS-86 thermospheric model’, J. Geophys. Res. 92, 4649–4662.Google Scholar
  72. Hedin, A.E.: 1991, ‘Extension of the MSIS thermosphere model into the middle and lower atmosphere’, J. Geophys. Res. 96, 1159–1172.Google Scholar
  73. Hedin, A.E., Bauer, P., Mayr, H.G., Carignan, G.R., Brace, L.H., Brinton, H.C., Parks, A.D., and Pelz, D.T.: 1977a, ‘Observations of neutral composition and related ionospheric variations during a magnetic storm in February 1974’, J. Geophys. Res. 82, 3183–3189.Google Scholar
  74. Hedin, A.E., Biondi, M.A., Burnside, R.G., Hernandez, G., Johnson, R.M., Killeen, T.L., Mazaudier, C., Meriwether, J.W., Salah, J.E., Sica, R.J., Smith, R.W., Spencer, N.W., Wickwar. V.B., and Virdi, T.S.: 1991, ‘Revised global model of thermosphere winds using satellite and ground-based observations’, J. Geophys. Res. 96, 7657–7688.Google Scholar
  75. Hedin, A.E., Reber, C.A., Newton, G.P., Spencer, N.W., Brinton, H.C., Mayr, H.G., and Potter, W.E.: 1977b, ‘A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 2. Composition’, J. Geophys. Res. 82, 2148–2156.Google Scholar
  76. Hedin, A.E., Salah, J.E., Evans, J.V., Reber, C.A., Newton, G.P., Spencer, N.W., Kayser, D.Y., Alcayde, D., Bauer, P., Cogger, L., and McClure, J.P.: 1977c, ‘A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 1. N2 density and temperature’, J. Geophys. Res. 82, 2139–2147.Google Scholar
  77. Ho, C.M., Mannucci, A.J., Lindquister, U.J., Pi, X., and Tsurutani, B.T.: 1996, ‘Global ionosphere perturbations monitored by the worldwide GPS network’, Geophys. Res. Lett. 23, 3219–3222.Google Scholar
  78. Horwitz, J.L.: 1983, ‘Major questions on the interchange of thermal plasma between the ionosphere and plasmasphere’, J. Atmos. Terr. Phys. 45, 765–775.Google Scholar
  79. Horwitz, J.L., Comfort, R.H., and Chappell, C.R.: 1984, ‘Thermal ion composition measurements of the formation of the new plasmasphere and double plasmapause during storm recovery phase’, Geophys. Res. Lett. 11, 701–704.Google Scholar
  80. Horwitz, J.L., Comfort, R.H., Richards, P.G., Chappell, C.R., Chandler, M.O., Anderson, P., Hanson, W.B., and Brace, L.H.: 1990, ‘Plasmasphere-ionosphere coupling. 2. Ion composition measurements at plasmaspheric and ionospheric altitudes and comparison with modeling results’, J. Geophys. Res. 95, 7949–7959.Google Scholar
  81. Jacchia, L. G.: 1965, ‘Static diffusion models of the upper atmosphere with empirical temperature profiles’, Smithsonian Contr. Astrophys. 8, 215–257.Google Scholar
  82. Jacchia, L.G.: 1971, ‘Revised static models of the thermosphere and exosphere with empirical temperature profiles’, Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, sao special report 332 edition.Google Scholar
  83. Jacchia, L. G., J.W. Slowey, and U. von Zahn: 1977, ‘Temperature, density, and composition in the disturbed thermosphere from ESRO 4 gas-analyzer measurements’, J. Geophys. Res. 82, 684–688.Google Scholar
  84. Jakowski, N.: 1981, ‘A method for analyzing ionospheric perturbations by combining ionospheric total electron content with foF2 data’. Physica Solariterr. 15, 130–136.Google Scholar
  85. Jakowski, N.: 1996, ‘TEC Monitoring by using satellite positioning systems’, in H. Kohl, R. Rüster, and K. Schlegel (eds.), Modern Ionospheric Science, pp. 371–390.Google Scholar
  86. Jakowski, N., Bettac, H.D., Lazo, B., and Lois, L.: 1981, ‘Seasonal variations of the columnar electron content of the ionosphere observed in Havana from July 1974 to April 1975’, J. Atmos. Terr. Phys. 43, 7–11.Google Scholar
  87. Jakowski, N. and Förster, M.: 1995, ‘About the nature of the nighttime winter anomaly effect’, Planet. Space Sci. 43, 603–612.Google Scholar
  88. Jakowski, N., Förster, M., Lazo, B., and Lois, L.: 1986, ‘Interhemispheric ionospheric coupling at the American sector during low solar activity I. Observations’, Gerlands Beitr. Geophysik 95, 219–227.Google Scholar
  89. Jakowski, N., Jungstand, A., Lois, L., and Lazo, B.: 1991, ‘Night-time enhancements of the 2-layer ionization over Havana, Cuba’, J. Atmos. Terr. Phys. 53(11/12), 1131–1138.Google Scholar
  90. Jakowski, N., Jungstand, A., Schlegel, K., Kohl, H., and Rinnert, K.: 1992, ‘The ionospheric response to perturbation electric fields during the onset phase of the geomagnetic storms’, Can. J. Phys. 70, 575–581.Google Scholar
  91. Jakowski, N. and Lois, L.: 1984, ‘Investigations of ionospheric storms by combining ionospheric total electron content with foF2 data’, Gerlands Beitr. Geophysik 93, 1–11.Google Scholar
  92. Jakowski, N., Putz, E., and Spalla, P.: 1990, ‘Ionospheric storm characteristics deduced from satellite radio beacon observations at three European stations’, Ann. Geophys. 8, 343–352.Google Scholar
  93. Jakowski, N., Sardon, E., Engler, E., Jungstand, A., and Klähn, D.: 1996, ‘Relationships between GPS-signal propagation errors and EISCAT observations’, Ann. Geophys. 14, 1429–1436.Google Scholar
  94. Jakowski, N., Schlüter, S., and Sardon, E.: 1999, ‘Total electron content of the ionosphere during the geomagnetic storm on January 10, 1997’, J. Atmos. Solar-Terr. Phys. 61, 299–307.Google Scholar
  95. Jones, K.L. and Rishbeth, H.: 1971, ‘The origin of storm increases of mid-latitude F-layer electron concentration’, J. Atmos. Terr. Phys. 33, 391–401.Google Scholar
  96. Kamide, Y. and Matsushita, S.: 1981, ‘Penetration of high-latitude electric fields into low latitudes’, J. Atmos. Terr. Phys. 43, 411–425.Google Scholar
  97. Kamide, Y., McPherron, R.L., Gonzales, W.D., Hamilton, D.C., Hudson, H.S., Joselyn, J.A., Kahler, S.W., Lyons, L.R., Lundstedt, H., and Szuszcsewicz, E.: 1997, ‘Magneticdtorms: Currentunderstanding and outstanding questions’, in B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo (eds.), Magnetic storms, Vol. 98 of Geophysical Monograph, American Geophysical Union, pp. 1–19.Google Scholar
  98. Kelley, M.C.: 1989, The Earth' Ionosphere: Plasma Physics and Electrodynamics, Vol. 43 of International Geophysics Series, Academic Press, Inc. with contributions from Rodney A. Heelis.Google Scholar
  99. Kersley, L., Aarons, J., and Klobuchar, J.A.: 1980, ‘Nighttime enhancements in total electron content near Arecibo and their association with VHF scintillations’, 85, 4241–4222.Google Scholar
  100. Kersley, L. and Klobuchar, J.A.: 1980, ‘Storm associated protonospheric depletion and recovery’, Planet. Space Sci. 28, 453–458.Google Scholar
  101. Kivelson, M.G. and Russell, C.T.: 1995, Introduction to Space Physics, Cambridge University Press.Google Scholar
  102. Kozyra, J.U. and Nagy, A.F.: 1991, ‘Ring current decay - coupling of ring current energy into the thermosphere/ionosphere system’, J. Geomagn. Geoelectr. 43(Suppl.), 285–297.Google Scholar
  103. Krinberg, IA.: 1978, Kinetics of the Electrons in Ionosphere and Plasmasphere of the Eart (in Russian), Nauka, Moscow.Google Scholar
  104. Krinberg, I.A. and Tashchilin, A.V.: 1982, ‘Refilling of geomagnetic force tube with a thermal plasma after magnetic disturbances’, Ann. Geophys. 38, 25–32.Google Scholar
  105. Leitinger, R.: 1998, ‘A magnetic field aligned approach to model the topside F-layer’, Adv. Space Res. 22(6), 789–792.Google Scholar
  106. Lemaire, J.F. and Gringauz, K.I.: 1998, The Earth' Plasmasphere, Cambridge University Press, with contributions from D.L. Carpenter and V. Bassolo.Google Scholar
  107. Lockwood, M.: 1983, ‘Field-aligned plasma flow in the quiet, mid-latitude ionosphere deduced from topside soundings’, J. Atmos. Terr. Phys. 45, 1–14.Google Scholar
  108. Lockwood, M.: 1995, ‘Large-scale fields and flows in the magnetosphere-ionosphere system’, Surveys in Geophysics 16, 389–441.Google Scholar
  109. Matuura, N.: 1972, ‘Theoretical models of ionospheric storms’, Space Science Reviews 13, 129–189.Google Scholar
  110. Mayaud, P.N.: 1980, Derivation, Meaning, and Use of Geomagnetic Indices, Vol. 22 of Geophysical Monograph, American Geophysical Union.Google Scholar
  111. Menietti, J.D., Burch, J.L., and Gallagher, D.L.: 1988, ‘Statistical study of ion flows in the dayside and nightside plasmasphere’, Planet. Space Sci. 36(7), 693–702.Google Scholar
  112. Menvielle, M. and Berthelier, A.: 1991, ‘The K-derived planetary indices: Description and availability’, Rev. Geophys. 29, 415–432.Google Scholar
  113. Mikhailov, A.V. and Förster, M.: 1999, ‘Some F2-Layer Effects During the January 06-11, 1997 CEDAR storm period as observed with the Millstone Hill Incoherent Scatter Facility’, J. Atmos. Solar-Terr. Phys. 61, 249–261.Google Scholar
  114. Min, Q.-L. and Watkins, B.J.: 1995, ‘Determination of auroral heat fluxes and thermal ion outflows using a numerical ionospheric model and incoherent-scatter radar data’, J. Geophys. Res. 100, 251–256.Google Scholar
  115. Moffett, R.J. and Quegan, S.: 1986, ‘The mid-latitude trough in the electron concentration of the ionospheric F-layer: A review of observations and modelling’, J. Atmos. Terr. Phys. 45, 315–343.Google Scholar
  116. Moldwin, M.B.: 1997, ‘Outer plasmaspheric plasma properties: What we know from satellite data’, Space Science Reviews 80, 181–198.Google Scholar
  117. Namgaladze, A.A., Förster, M., and Yurik, R.Y.: 2000, ‘Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model’, Ann. Geophys. 18, 461–477.Google Scholar
  118. Namgaladze, A.A., Korenkov, Y.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., and Naumova, N.M.: 1988, ‘Global model of the thermosphere-ionosphere- protonosphere system’, Pure Appl. Geophys. 127, 219–254.Google Scholar
  119. Namgaladze, A.A., Korenkov, Y.N., Klimenko, V.V., Karpov, I.V., Surotkin, V.A., and Naumova, N.M.: 1991, ‘Numerical modelling of the thermosphere-ionosphere-protonosphere system’, J. Atmos. Terr. Phys. 53, 1113–1124.Google Scholar
  120. Ober, D.M., Horwitz, J.L., and Gallagher, D.L.: 1997, ‘Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events’, J. Geophys. Res. 102, 14,595-14,602.Google Scholar
  121. Park, C.G.: 1970, ‘Whistler observations of the interchange of ionisation between the ionosphere and the protonosphere’, J. Geophys. Res. 75, 4249–4260.Google Scholar
  122. Park, C.G.: 1973, ‘Whistler observations of the depletion of the plasmasphere during a magnetospheric substorm’, J. Geophys. Res. 78, 672–683.Google Scholar
  123. Pavlov, A.V.: 1993, ‘The role of vibrationally excited nitrogen in the formation of the mid-latitude ionisation trough’, Ann. Geophys. 11, 479–484.Google Scholar
  124. Peymirat, C., Richmond, A.D., Emery, B.A., and Roble, R.G.: 1998, ‘A magnetosphere thermosphere ionosphere electrodynamics general circulation model’, J. Geophys. Res. 103, 17,467–17,477.Google Scholar
  125. Poulter, E.M., Hargreaves, J.K., Bailey, G.J., and Moffett, R.J.: 1981, ‘A modelling study of satellite beacon measurements of protonospheric replenishment’, Planetary and Space Science 29(12), 1281–1286.Google Scholar
  126. Prölss, G.W.: 1980, ‘Magnetic storm associated perturbations of the upper atmosphere: Recent results obtained by satellite-borne gas analyzers’, Rev. Geophys. Space Phys. 18, 183–202.Google Scholar
  127. Prölss, G.W.: 1982, ‘Perturbation of the low-latitude upper atmosphere during magnetic substorm activity’, J. Geophys. Res. 87, 5260–5266.Google Scholar
  128. Prölss, G.W.: 1984, ‘Local time dependence of magnetic storm effects on the atmosphere at middle latitudes’, Ann. Geophys. 2, 481–486.Google Scholar
  129. Prölss, G.W.: 1993, ‘On explaining the local time variation of ionospheric storm effects’, Ann. Geophys. 11, 1–9.Google Scholar
  130. Prölss, G.W.: 1995, ‘Ionospheric F-region storms’, in H. Volland (ed.), Handbook of Atmospheric Electrodynamics, Vol. 2. CRC Press, Boca Raton, pp. 195–248.Google Scholar
  131. Prölss, G.W.: 1997, ‘Magnetic storm associated perturbations of the upper atmosphere’, in B.T. Tsurutani, W.D. Gonzalez, Y. Kamide, and J.K. Arballo (eds.), Magnetic storms, Vol. 98 of Geophysical Monograph, American Geophysical Union, pp. 227–241.Google Scholar
  132. Rawer, K., Bilitza, D., and Ramakrishnan, S.: 1978, ‘Goals and Status of the International Reference Ionosphere’, Rev. Geophys. Space Phys. 16, 177–181.Google Scholar
  133. Richmond, A.D.: 1976, ‘Electric field in the ionosphere and plasmasphere on quiet days’, J. Geophys. Res. 81, 1447–1450.Google Scholar
  134. Richmond, A.D., Ridley, E.C., and Roble, R.G.: 1992, ‘A thermosphere/ionosphere general circulation model with coupled electrodynamics’, Geophys. Res. Lett. 19, 601–604.Google Scholar
  135. Rishbeth, H.: 1986, ‘On the F2-layer continuity equation’, J. Atmos. Terr. Phys. 48, 511–519.Google Scholar
  136. Rishbeth, H.: 1997a, ‘The ionospheric E-layer and F-layer dynamos - A tutorial review’, J. Atmos. Solar-Terr. Phys. 59, 1873–1880.Google Scholar
  137. Rishbeth, H.: 1997b, ‘Long-term changes in the ionosphere’, Adv. Space Res. 20, 1249–1255.Google Scholar
  138. Rishbeth, H., Fuller-Rowell, T.J., and Rees, D.: 1987, ‘Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: A computational study’, Planet. Space Sci. 35, 1157–1165.Google Scholar
  139. Rishbeth, H. and Garriott, O.K.: 1969, Introduction to Ionospheric Physics, Vol. 14 of International Geophysics Series, Academic Press, Inc.Google Scholar
  140. Roble, R.G., Ridley, E.C., Richmond, A.D., and Dickinson, R.E.: 1988, ‘A coupled thermosphere/ ionosphere general circulation model’, Geophys. Res. Lett. 15, 1325–1328.Google Scholar
  141. Rodger, A.S., Moffett, R.J., and Quegan, S.: 1992, ‘The role of the ion drift in the formation of ionization troughs in the mid-and high-latitude ionosphere: A review’, J. Atmos. Terr. Phys. 54, 1–30.Google Scholar
  142. Scherliess, L. and Fejer, B.G.: 1997, ‘Stormtime dependence of equatorial disturbance dynamo zonal electric fields’, J. Geophys. Res. 102, 24,037–24,046.Google Scholar
  143. Schlesier, A.C. and Buonsanto, M.J.: 1999, ‘The Millstone Hill ionospheric model and its application to the May 26-27, 1990, ionospheric storm’, J. Geophys. Res. 104, 22,453–22,468.Google Scholar
  144. Schunk, R.W.: 1977, ‘Mathematical structure of transport equations for multispecies flows’, Rev. Geophys. Space Phys. 15, 429–445.Google Scholar
  145. Skoblin, M.G. and MFörster, M.: 1995, ‘Steep latitudinal gradients of thermospheric composition during magnetic storms: A possible formation mechanism’, Ann. Geophys. 13, 277–284.Google Scholar
  146. Skoblin, M.G. and Förster, M.: 1996, ‘Ionosphere-protonosphere thermal plasma fluxes estimated from Magion 2 and ionosonde data in August-September 1990’, J. Geophys. Res. 101, 26971- 26979.Google Scholar
  147. Smith, R.W.: 1998, ‘Vertical winds: a tutorial’, J. Atmos. Solar-Terr. Phys. 60, 1425–1434.Google Scholar
  148. Sojka, J.J., Schunk, R.W., Bowline, M.D., Chen, J., Slinker, S., Fedder, J., and Sultan, P.J.: 1998, ‘Ionospheric storm simulations driven by magnetospheric MHD and by empirical models with data comparisons’, J. Geophys. Res. 103, 20,669–20,684.Google Scholar
  149. St.-Maurice, J.P. and Schunk, R.W.: 1977, ‘Diffusion and heat flow equations for the mid-latitude topside ionosphere’, Planet. Space Sci. 25, 907–920.Google Scholar
  150. Stubbe, P.: 1970, ‘Simultaneous solution of the time dependent coupled continuity equations, heat conduction equations, and equations of motion for a system consisting of neutral gas and electron gas and a four component ion gas’, J. Atmos. Terr. Phys. 32, 865–903.Google Scholar
  151. Szuszczewicz, E.P., Lester, M., Wilkinson, P., Blanchard, P., M. Abdu, M., Hanbaba, R., Igarashi, K., Pulinets, S., and Reddy, B.M.: 1998, ‘A comparative study of global ionospheric responses to intense magnetic storm condition’, J. Geophys. Res. 103, 11,665–11,684.Google Scholar
  152. Szuszczewicz, E.P., Torr, D., Wilkinson, P., Richards, P., Roble, R., Emery, B.A., Lu, G., Abdu, M., Evans, D.S., Hanbaba, R., Igarashi, K., Jiao, P., Lester, M., Pulinets, S., Reddy, B.M., Blanchard, P., K. Miller, K., and Joselyn, J.: 1996, ‘F region climatology during the SUNDIAL/ATLAS 1 Campaign of March 1992: Model-measurement comparisons and cause-effect relationships’, J. Geophys. Res. 101, 26,741–26,758.Google Scholar
  153. Taylor, J.R., Lester, M., and Yeoman, T.K.: 1994, ‘A superimposed epoch analysis of geomagnetic storms’, Ann. Geophys. 12, 612–624.Google Scholar
  154. Titheridge, J.: 1976, ‘Ion transition heights from topside electron density profiles’, Planet. Space Sci. 24, 229–245.Google Scholar
  155. Titheridge, J.: 1995, ‘Winds in the ionosphere - A review’, J. Atmos. Terr. Phys. 57, 1681–1714.Google Scholar
  156. Treumann, R.A. and Baumjohann, W.: 1997, Advanced Space Plasma Physics, Imperial College Press, London.Google Scholar
  157. Vickrey, J.F., Swartz, W.E., and Farley, D.T.: 1979, ‘Ion transport in the topside ionosphere at Arecibo’, J. Geophys. Res. 84, 7307–7314.Google Scholar
  158. Wagner, C.-U., Möhlmann, D., Schäfer, K., Mishin, V.M., and Matveev, M.I.: 1980, ‘Large-scale electric fields and currents and related geomagnetic variations in the quiet plasmasphere’, Space Science Reviews 26, 391–446.Google Scholar
  159. Weimer, D.R.: 1995, ‘Models of high latitude electric potentials derived with a least error fit of spherical harmonic coefficients’, J. Geophys. Res. 100, 19,595–19,602.Google Scholar
  160. Wright Jr., J.M. (ed.): 1995, ‘National Space Weather Program, Strategic Plan’, FCM-P30-1995. Washington, D.C., U.S.A.: Working Group for the National Space Weather Program (WG/NSWP) of the Committee for Space Environment Forecasting (CSEF) of the Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM).Google Scholar
  161. Wright Jr., J.M. (ed.): 1997, ‘National Space Weather Program, The Implementation Plan’, FCMP31-1995. Washington, D.C., U.S.A.: Working Group for the National Space Weather Program (WG/NSWP) of the Committee for Space Environment Forecasting (CSEF) of the Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM).Google Scholar
  162. Yeh, H.C. and Foster, J.C.: 1990, ‘Storm time heavy ion outflow at mid-latitude’, J. Geophys. Res. 95, 7881–7891.Google Scholar
  163. Yeh, H.-C., Foster, J.C., Rich, F.J., and Swider, W.: 1991, ‘Storm time electric field penetration observed at mid-latitude’, J. Geophys. Res. 96, 5707–5721.Google Scholar
  164. Zumberge, J., Neilan, R., Beutler, G., and Gurtner, W.: 1994, ‘The International GPS-Service for Geodynamics-Benefits to Users’, in Proceedings of ION GPS-94. Salt Lake City, September 20-23, 1994, pp. 1667–1673.Google Scholar
  165. Zuzic, M., Scherliess, L., and Prölss, G.W.: 1997, ‘Latitudinal structure of thermospheric composition perturbations’, J. Atmos. Solar-Terr. Phys. 59, 711–724.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Matthias Förster
    • 1
  • Norbert Jakowski
    • 2
  1. 1.GeoForschungsZentrum Potsdam, TelegrafenbergPotsdamGermany
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt e.V., DFDNeustrelitzGermany

Personalised recommendations