Skip to main content
Log in

Isochoric Heat Capacity Measurements for Light and Heavy Water Near the Critical Point

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The isochoric heat capacity was measured for D2O at a fixed density of 356.075 kg·m−3 and for H2O at 309.905 kg·m−3. The measurements cover the range of temperatures from 623 to 661 K. The measurements were made with a high-temperature, high-pressure, adiabatic calorimeter with a nearly constant inner volume. The uncertainty of the temperature is 10 mK, while the uncertainty of the heat capacity is estimated to be 2 to 3%. Measurements were made in both the two-phase and the one-phase regions. The calorimeter instrumentation also enables measurements of PVT and the temperature derivative (∂P/∂T)V along each measured isochore. A detailed discussion is presented on the experimental temperature behavior of CV in the one- and two-phase regions, including the coexistence curve near the critical point. A quasi-static thermogram method was applied to determine values of temperature at saturation TS(ρ) on measured isochores. The uncertainty of the phase-transition temperature measurements is about ±0.02 K. The measured CV data for D2O and H2O are compared with values predicted from a recent developed parametric crossover equation of state and IAPWS-95 formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kh. I. Amirkhanov, G. V. Stepanov, B. A. Mursalov, and O. A. Bui, Teploenergetika 22:68 (1973).

    Google Scholar 

  2. Kh. I. Amirkhanov, G. V. Stepanov, and B. A. Mursalov, Dokl. Akad. Nauk SSSR 163:1189 (1965).

    Google Scholar 

  3. B. A. Mursalov, Ph.D. thesis (AZNEFTEXIM, Baku, 1975).

    Google Scholar 

  4. B. A. Mursalov, I. M. Abdulagatov, V. I. Dvoryanchikov, and S. B. Kiselev, Int. J. Thermophys. 20:1497 (1999).

    Google Scholar 

  5. S. B. Kiselev, I. M. Abdulagatov, and A. H. Harvey, Int. J. Thermophys. 20:563 (1999).

    Google Scholar 

  6. A. K. Wyczalkowska, Kh. S. Abdulkadirova, M. A. Anisimov, and J. V. Sengers, J. Chem. Phys. 113:4985 (2000).

    Google Scholar 

  7. P. G. Hill, R. D. C. Macmillan, and V. Lee, J. Phys. Chem. Ref. Data 11:1 (1982).

    Google Scholar 

  8. I. M. Abdulagatov, J. W. Magee, S. B. Kiselev, and D. J. Friend, in Steam, Water, and Hydrothermal Systems: Physical and Chemical Meeting the Needs of Industry. Proc. 13th Int. Conf. Pro. Water Steam, P. R. Tremaine, P. G. Hill, D. E. Irish, and P. V. Balakrishnan, eds. (NRC Press, Ottawa, 2000), p. 374.

    Google Scholar 

  9. J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill, J. Phys. Chem. Ref. Data 14:103 (1985).

    Google Scholar 

  10. G. M. Hebert, H. F. McDuffie, and C. H. Secoy, J. Phys. Chem. 62:431 (1958).

    Google Scholar 

  11. E. H. Riesenfeld and T. L. Chang, Zeitschr. Phys. Chem. 30:61 (1935).

    Google Scholar 

  12. Kh. I. Amirkhanov, G. V. Stepanov, and B. G. Alibekov, Isochoric Heat Capacity of Water and Steam (Amerind, New Delhi, 1974).

    Google Scholar 

  13. I. M. Abdulagatov, N. G. Polikhronidi, and R. G. Batyrova, J. Chem. Thermodyn. 26:1031 (1994).

    Google Scholar 

  14. I. M. Abdulagatov, N. G. Polikhronidi, and R. G. Batyrova, Ber. Bunsenger. Phys. Chem. 98:1068 (1994).

    Google Scholar 

  15. N. G. Polikhronidi, R. G. Batyrova, and I. M. Abdulagatov, Fluid Phase Equil. 175:153 (2000).

    Google Scholar 

  16. I. M. Abdulagatov, V. I. Dvoryanchikov, and L. G. Abramova, J. Sol. Chem. 28:871 (1999).

    Google Scholar 

  17. N. B. Vargaftik, Handbook of Physical Properties of Liquids and Gases, 2nd ed. (Hemisphere, New York, 1983).

    Google Scholar 

  18. W. Wagner and A. Pruss, submitted for publication.

  19. Kh. I. Amirkhanov, G. V. Stepanov, I. M. Abdulagatov, and O. A. Boi, Isochoric Heat Capacity of Propan-1-ol and Propan-2-ol (Dagestan Scientific Center of the Russian Academy of Science, Makhachkala, 1989).

    Google Scholar 

  20. G. Blank, Warme Stoffubertragung 2:53 (1969).

    Google Scholar 

  21. W. L. Marshall and J. M. Simonson, J. Chem. Thermodyn. 23:613 (1991).

    Google Scholar 

  22. S. L. Rivkin and T. S. Akhundov, Teploenergetika 9:62 (1962).

    Google Scholar 

  23. S. L. Rivkin and T. S. Akhundov, Atomnaya Energet. 14:581 (1963).

    Google Scholar 

  24. N. V. Tsederberg, A. A. Aleksandrov, T. S. Khasanshin, and D. K. Larkin, Teploenergetika 20:13 (1973).

    Google Scholar 

  25. G. S. Kell, G. E. McLaurin, and E. Whalley, Proc. Roy. Soc. Lond. A 425:49 (1989).

    Google Scholar 

  26. J. R. Heiks, M. K. Barnett, L. V. Jones, and E. Orban, J. Phys. Chem. 58:488 (1954).

    Google Scholar 

  27. J. Kestin and J. V. Sengers, J. Phys. Chem. Ref. Data 15:305 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polikhronidi, N.G., Abdulagatov, I.M., Magee, J.W. et al. Isochoric Heat Capacity Measurements for Light and Heavy Water Near the Critical Point. International Journal of Thermophysics 22, 189–200 (2001). https://doi.org/10.1023/A:1006767905322

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006767905322

Navigation