Skip to main content
Log in

Characterization of Cliquish Functions

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For a real function f defined on a perfect Baire space X the following are equivalent: f is cliquish, and f is a pointwise limit of two monotone sequences of upper and lower quasi-continuous functions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Crossley and S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci., 22 (1971), 123–126.

    Google Scholar 

  2. R. Engelking, General Topology (Warszawa, 1977).

  3. J. Ewert, On quasi-continuous and cliquish maps with values in uniform spaces, Bull. Polish Acad. Sci. Math., 32 (1984), 81–88.

    Google Scholar 

  4. J. Ewert, Note on limits of simply continuous and cliquish functions, Intrenat. J. Math. Math. Sci., 17 (1994), 447–450.

    Google Scholar 

  5. J. Ewert and T. Lipski, Lower and upper quasi-continuous functions, Demonstr. Math., 16 (1983), 85–93.

    Google Scholar 

  6. J. Ewert and M. Przemski, Cliquish, lower and upper quasi-continuous functions, Słupskie Prace Mat. Przyr., 4 (1983), 3–12.

    Google Scholar 

  7. Ł. A. Fudali, On cliquish functions on product spaces, Math. Slovaca, 33 (1983), 53–58.

    Google Scholar 

  8. S. Kempisty, Sur les fonctions quasi-continues, Fundam. Math., 19 (1932), 184–197.

    Google Scholar 

  9. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.

    Google Scholar 

  10. T. Neubrunn, Quasicontinuity, Real Anal. Exchange, 14 (1988–89), 259–306.

    Google Scholar 

  11. A. Neubronnová, On quasi-continuous and cliquish functions, Časopis Pěst. Mat., 99 (1974), 109–114.

    Google Scholar 

  12. H. P. Thielman, Types of functions, Amer. Math. Monthly, 60 (1953), 156–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ewert, J. Characterization of Cliquish Functions. Acta Mathematica Hungarica 89, 269–276 (2000). https://doi.org/10.1023/A:1006762702077

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006762702077

Keywords

Navigation