Abstract
For a real function f defined on a perfect Baire space X the following are equivalent: f is cliquish, and f is a pointwise limit of two monotone sequences of upper and lower quasi-continuous functions, respectively.
Similar content being viewed by others
References
S. G. Crossley and S. K. Hildebrand, Semi-closed sets and semi-continuity in topological spaces, Texas J. Sci., 22 (1971), 123–126.
R. Engelking, General Topology (Warszawa, 1977).
J. Ewert, On quasi-continuous and cliquish maps with values in uniform spaces, Bull. Polish Acad. Sci. Math., 32 (1984), 81–88.
J. Ewert, Note on limits of simply continuous and cliquish functions, Intrenat. J. Math. Math. Sci., 17 (1994), 447–450.
J. Ewert and T. Lipski, Lower and upper quasi-continuous functions, Demonstr. Math., 16 (1983), 85–93.
J. Ewert and M. Przemski, Cliquish, lower and upper quasi-continuous functions, Słupskie Prace Mat. Przyr., 4 (1983), 3–12.
Ł. A. Fudali, On cliquish functions on product spaces, Math. Slovaca, 33 (1983), 53–58.
S. Kempisty, Sur les fonctions quasi-continues, Fundam. Math., 19 (1932), 184–197.
N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
T. Neubrunn, Quasicontinuity, Real Anal. Exchange, 14 (1988–89), 259–306.
A. Neubronnová, On quasi-continuous and cliquish functions, Časopis Pěst. Mat., 99 (1974), 109–114.
H. P. Thielman, Types of functions, Amer. Math. Monthly, 60 (1953), 156–161.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ewert, J. Characterization of Cliquish Functions. Acta Mathematica Hungarica 89, 269–276 (2000). https://doi.org/10.1023/A:1006762702077
Issue Date:
DOI: https://doi.org/10.1023/A:1006762702077