Skip to main content
Log in

A Thin, Composite Sodium Chloride Dosimeter with Diffuse Reflected Light Spectrophotometric Read Out

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Optical absorption by electrons trapped in natural anionic vacancies in NaCl has been used for the construction of a dosimeter for radiation processing. To meet the demands of electron beam processing, characterised by congestion of isodoses, the active part of the dosimeter, i.e., the microcrystals of NaCl are embedded in a 0.3 mm thick polyethylene film, in which doses from 10 MeV electrons do not exceed ±2% difference in extreme parts of the dosimeter body. The dosimetric film is opaque and the optical density at the wavelength λmax = 465 nm, i.e., the maximum absorption of the F band, is measured by diffuse reflected light spectrophotometry (DRS). The measurement is performed against the unirradiated film as reference, thus increasing the accuracy, by self-compensation of signals not belonging to the absorption of F-centres. The spectrum obtained in such a way is identical with that of F-centres in irradiated single NaCl crystals. The calibration curve of the height of the band is almost linear versus the dose in the range of several tens of kilograys. As ordinary grades of sodium chloride may be used, the dosimeter developed is cheap and enables to map the irradiation field in objects of complicated geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Przybytniak, Z. P. ZagÓrski, J. Radioanal. Nucl. Chem., 212 (1996) 373.

    Google Scholar 

  2. Z. P. ZagÓrski, A. Rafalski, J. Radioanal. Nucl. Chem., 196 (1995) 97.

    Google Scholar 

  3. W. L. McLaughlin, A. C. Lucas, B. M. Kapsar, A. Miller, Radiat. Phys. Chem., 14 (1979) 467.

    Google Scholar 

  4. W. L. McLaughlin, A. Miller, S. C. Ellis, B. M. Kapsar, Nucl. Instr. Meth., 175 (1980) 17.

    Google Scholar 

  5. S. F. Patil, D. Ravishankar, P. Bhatia, I. B. Chowdhary, Intern. J. Appl. Radiation Isotopes, 35 (1984) 459.

    Google Scholar 

  6. D. L. Vainshtein, H. W. Den Hartog, Appl. Radiation Isotopes, 47 (1996) 1503.

    Google Scholar 

  7. S. Owaki, S. Koyama, M. Takahashi, M. Kamada, R. Suzuki, Radiat. Phys. Chem., 49 (1997) 609.

    Google Scholar 

  8. Z. P. ZagÓrski, Radiat. Phys. Chem., 22 (1983) 409.

    Google Scholar 

  9. Z. P. ZagÓrski, G. K. Przybytniak, Nukleonika, 42 (1997) 373.

    Google Scholar 

  10. R. Alcala, Appl. Radiation Isotopes, 47 (1996) 1471.

    Google Scholar 

  11. Z. P. ZagÓrski, Radiat. Phys. Chem., (1999) in print.

  12. Z. P. ZagÓrski, Thermal and electrostatic aspects of radiation processing of polymers, in: Radiation Processing of Polymers, A. Singh and J. Silverman (Eds), Hanser Publishers, Munich, Vienna, New York, Barcelona 1992, p. 271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagórski, Z.P., Rafalski, A. A Thin, Composite Sodium Chloride Dosimeter with Diffuse Reflected Light Spectrophotometric Read Out. Journal of Radioanalytical and Nuclear Chemistry 245, 233–236 (2000). https://doi.org/10.1023/A:1006761027423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006761027423

Keywords

Navigation