Skip to main content
Log in

Viscosity and Surface Tension of Saturated Toluene from Surface Light Scattering (SLS)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

It is demonstrated that dynamic light scattering (DLS) on a horizontal gas– liquid interface can be used for the reliable determination of surface tension and liquid kinematic viscosity. In contrast to the more usual approaches of surface light scattering (SLS) spectroscopy, a setup is used and described here which makes it possible to measure the capillary wave propagation characteristics in the forward scattering direction at variable wave numbers. The experiments in this work rely on a heterodyne detection scheme and signal analysis by photon correlation spectroscopy (PCS). Surface tension and liquid viscosity data of the important and, thus, well-documented reference fluid toluene have been measured under saturation conditions over a wide temperature range, from 263 to 383 K. These data demonstrate the excellent performance of the surface light scattering technique. The achievable accuracy of this technique is discussed in detail for both properties in connection with reference values available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Brouwer and R. K. Pathria, Phys. Rev. 163:200 (1967).

    Google Scholar 

  2. R. H. Katyl and U. Ingard, Phys. Rev. Lett. 19:64 (1967).

    Google Scholar 

  3. R. H. Katyl and U. Ingard, Phys. Rev. Lett. 20:248 (1968).

    Google Scholar 

  4. E. H. Lucassen-Reynders and J. Lucassen, Adv. Colloid Interface Sci. 2:331 (1969).

    Google Scholar 

  5. M. Giglio and G. B. Benedek, Phys. Rev. Lett. 23:1145 (1969).

    Google Scholar 

  6. M. A. Bouchiat and J. Meunier, Phys. Rev. Lett. 23:752 (1971).

    Google Scholar 

  7. M. A. Bouchiat and J. Meunier, J. Physique 32:561 (1971).

    Google Scholar 

  8. J. Zollweg, G. Hawkins and G. B. Benedek, Phys. Rev. Lett. 27:1185 (1971).

    Google Scholar 

  9. D. McQueen and I. Lundström, J. Chem. Soc. Faraday Trans. I 69:694 (1973).

    Google Scholar 

  10. D. Langewin and J. Meunier, in Photon Correlation Spectroscopy and Velocimetry, NATO Advanced Study Institutes Series, Series B: Physics, Vol. 23, H. Z. Cummins and E. R. Pike, eds. (Plenum Press, New York, 1977), pp. 501–518.

    Google Scholar 

  11. A. Bttger and J. G. H. Joosten, Europhys. Lett. 4:1297 (1987).

    Google Scholar 

  12. T. M. Jørgensen, Meas. Sci. Technol. 3:588 (1992).

    Google Scholar 

  13. T. Nishio and Y. Nagasaka, Int. J. Thermophys. 16:1087 (1995).

    Google Scholar 

  14. D. Sharpe and J. Eastoe, Langmuir 12:2303 (1996).

    Google Scholar 

  15. A. P. Fröba, S. Will, and A. Leipertz, Appl. Opt. 36:7615 (1997).

    Google Scholar 

  16. P. Tin, J. A. Mann, W. V. Meyer, and T. W. Taylor, Appl. Opt. 36:7601 (1997).

    Google Scholar 

  17. D. Sharpe and J. C. Earnshaw, J. Chem. Phys. 107:7493 (1997).

    Google Scholar 

  18. Q. R. Huang, C. H. Wang, and N. J. Deng, J. Chem. Phys. 108:3827 (1998).

    Google Scholar 

  19. Q. R. Huang and C. H. Wang, J. Chem. Phys. 109:6103 (1998).

    Google Scholar 

  20. D. M. A. Buzza, J. L. Jones, T. C. B. McLeish, and R. W. Richards, J. Chem. Phys. 109:5008 (1998).

    Google Scholar 

  21. D. Langewin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

    Google Scholar 

  22. K. Sakai, P. K. Choi, H. Tanaka, and K. Takagi, Rev. Sci. Instrum. 62:1192 (1991).

    Google Scholar 

  23. R. D. Goodwin, J. Phys. Chem. Ref. Data 18, 1565 (1989).

    Google Scholar 

  24. C. A. Nieto de Castro and F. J. Vieira dos Santos, personal communication (Department of Chemistry and Biochemistry, University of Lisbon, Lisabon, 1997).

  25. K. Lucas, C. I. T. 46:157 (1974).

    Google Scholar 

  26. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977 and 1987).

    Google Scholar 

  27. K. Kraft, M. Matos Lopes, and A. Leipertz, Int. J. Thermophys. 16:423 (1995).

    Google Scholar 

  28. M. S. Medani and M. A. Hasan, Can. J. Chem. Eng. 55: 203 (1977).

    Google Scholar 

  29. J. H. Dymond and J. Robertson, Int. J. Thermophys. 6:21 (1985).

    Google Scholar 

  30. C. H. Byers and D. F. Williams, J. Chem. Eng. Data 32: 344 (1987).

    Google Scholar 

  31. F. A. Gonçalves, K. Hamano, J. V. Sengers, and J. Kestin, Int. J. Thermophys. 8:641 (1987).

    Google Scholar 

  32. B. Kaiser, A. Laesecke, and M. Stelbrink, Int. J. Thermophys. 12:289 (1991).

    Google Scholar 

  33. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases in Normal and Dissociated States (Hemisphere, Washington, DC, 1983), pp. 347–348.

    Google Scholar 

  34. A. H. Krall, J. V. Sengers, and J. Kestin, J. Chem. Eng. Data 37:349 (1992).

    Google Scholar 

  35. D. K. Agarwal, R. Gopal, and S. Agarwal, J. Chem. Eng. Data 24:181 (1979).

    Google Scholar 

  36. Y. Morino, Sci. Pap. Inst. Phys. Chem. Res. Jpn. 23:49 (1933).

    Google Scholar 

  37. W. Herz and E. Knaebel, Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 131:389 (1928).

    Google Scholar 

  38. F. M. Jaeger, Z. Anorg. Allg. Chem. 101:1 (1917).

    Google Scholar 

  39. R. Kremann and R. Meingast, Monatshefte Chem. 35:1332 (1914).

    Google Scholar 

  40. P. Walden and R. Swinne, Z. Phys. Chem. 79:700 (1912).

    Google Scholar 

  41. T. Renard and P. A. Guye, J. Chim. Phys. 5:81 (1907).

    Google Scholar 

  42. R. E. Donaldson and O. R. Quayle, J. Am. Chem. Soc. 72:35 (1950).

    Google Scholar 

  43. C. A. Buehler, T. S. Gardner, and M. L. Clemens, J. Org. Chem. 2:167 (1937).

    Google Scholar 

  44. G. Körösi and E. sz. Kováts, J. Chem. Eng. Data 26:323 (1981).

    Google Scholar 

  45. J. J. Jasper, J. Phys. Chem. Ref. Data 1:841 (1972).

    Google Scholar 

  46. J. C. Bonnet and F. P. Pike, J. Chem. Eng. Data 17:145 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröba, A.P., Leipertz, A. Viscosity and Surface Tension of Saturated Toluene from Surface Light Scattering (SLS). International Journal of Thermophysics 22, 41–59 (2001). https://doi.org/10.1023/A:1006755502597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006755502597

Navigation