Skip to main content
Log in

Thermophysical Properties of Ammonia–Water Mixtures for Prediction of Heat Transfer Areas in Power Cycles

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In power cycles using ammonia–water mixtures as the working fluid, several heat exchangers are used. The influence of different correlations for predicting thermophysical properties on the calculations of the size of the heat exchangers is presented. Different correlations for predicting both the thermodynamic and the transport properties are included. The use of different correlations for the thermodynamic properties gives a difference in the total heat exchanger area of 7%, but for individual heat exchangers, the difference is up to 24%. Different correlations for the mixture transport properties give differences in the predicted heat exchanger areas that are, at most, about 10% for the individual heat exchangers. The influence on the total heat exchanger area is not larger than 3%. A difference in the total heat exchanger area of 7% would probably correspond to less than 2% of the total cost for the process equipment. Experimental data and correlations developed for the ammonia–water mixture transport properties are very scarce. The evaporation and condensation processes involving ammonia–water mixtures are also not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Thorin, C. Dejfors, and G. Svedberg, Int. J. Thermophys. 19:501 (1998).

    Google Scholar 

  2. E. Thorin, Int. J. Thermophys. 21:853(2000).

    Google Scholar 

  3. G. Pinevic, Kholodil. Tekh. 3:30 (1948).

    Google Scholar 

  4. M. J. Frank, J. A. Kuipers, and W. P. M. van Swaaij, J. Chem. Eng. Data 41:297 (1996).

    Google Scholar 

  5. L. Riedel, Chem. Ing. Tech. 3:59 (1951).

    Google Scholar 

  6. A. N. Baranov, B. R. Churagulov, A. I. Kalina, F. Y. Sharikov, A. A. Zharov, and A. B. Yaroslavtsev, in Report of the Workshop on Thermophysical Properties of Ammonia/Water Mixtures, NISTIR 5059, D. G. Friend and W. M. Haynes (NIST, Boulder, CO, 1997), pp. 59-67.

    Google Scholar 

  7. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases Liquids, 4th ed. (McGraw-Hill, New York, 1987).

    Google Scholar 

  8. S. S. Stecco and U. Desideri, in Proceedings of the ASME Cogen-Turbo, IGTI, Vol. 6 (ASME, New York, 1991), pp. 389-396.

    Google Scholar 

  9. U. Desideri, personal communication (Department of Industrial Engineering, University of Perugia, Perugia, Italy, 1994).

  10. Y. M. El-Sayed, in Proceedings of ASME Winter Annual Meeting, Vol. I-11. (ASME, Chicago, 1988), pp. 19-24.

    Google Scholar 

  11. Y. M. El-Sayed, personal communication (Advanced Energy Systems Analysis, Fremont, CA, 2000).

  12. N. M. Singh, Progr. Refrig. Sci. Technol. 2:473 (1973).

    Google Scholar 

  13. A. Luikov, A. Shashkov, and T. Abramenko, Proc. 4th Symp. Thermophys. Prop. (1968), pp. 411-415.

  14. R. Tillner-Roth and D. Friend, J. Phys. Chem. Ref. Data 27:63 (1998).

    Google Scholar 

  15. S. S. Stecco and U. Desideri, ASME paper 89-GT-149 (1989).

  16. B. Ziegler and Ch. Trepp, Int. J. Refrig. 7:101 (1984).

    Google Scholar 

  17. Y. M. El-Sayed and M. Tribus, ASME AES 1:89 (1985).

    Google Scholar 

  18. M. Hultén and T. Berntsson, Int. J. Refrig, 22:91, (1999).

    Google Scholar 

  19. Y. M. El-Sayed and M. Tribus, ASME AES 1:97 (1985).

    Google Scholar 

  20. W. M. Kays and A. L. London, Compact Heat Exchangers, 3rd ed. (Krieger, Malabar, FL, 1998).

    Google Scholar 

  21. G. F. Hewitt, Hemisphere Handbook of Heat Exchanger Design (Hemisphere, New York, 1990).

    Google Scholar 

  22. S. Kakac and H. Liu, Heat Exchangers-Selection, Rating and Thermal Design (CRC Press LLC, Boca Raton, FL, 1998).

    Google Scholar 

  23. A. Dvoiris and M. D. Mirolli, in Proc. 1998 ASME Fluids Eng. Div. Meet. Vol. 254 (Washington, DC, 1998), pp. 1-9.

  24. P. Rohlin, Zeotropic Refrigerant Mixtures in Systems and in Flow Boiling, Doctoral thesis (Royal Institute of Technology, Stockholm, 1996).

    Google Scholar 

  25. A. Cohn, EPRI AP-4681, Project 2528-4, Final Report (1986).

  26. A. I. Kalina, H. M. Leibowitz, D. W. Markus, and R. I. Pelletier, ASME paper 91-GT-365 (1991).

  27. W. von Gajewski, A. Lezuo, R. Nürnberg, B. Rukes, and H. Vesper, VGB Kraftwerkstechnik 69:477 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorin, E. Thermophysical Properties of Ammonia–Water Mixtures for Prediction of Heat Transfer Areas in Power Cycles. International Journal of Thermophysics 22, 201–214 (2001). https://doi.org/10.1023/A:1006745100278

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006745100278

Navigation