Skip to main content
Log in

Detection and Quantification Capabilities and the Evaluation of Low-Level Data: Some International Perspectives and Continuing Challenges

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The minimum amounts or concentrations of an analyte that may be detected or quantified by a specific measurement process (MP) represent fundamental performance characteristics that are vital for planning experiments and designing MPs to meet external specifications. Following many years of conceptual and terminological disarray regarding detection and quantification limits, the International Union of Pure and Applied Chemistry (IUPAC, 1995) and the International Organization for Standardization (ISO, 1997) developed a harmonized position and documents that provide a basis for international consensus on this topic. During the past year, the International Atomic Energy Agency (IAEA) has developed a TECDOC on Quantifying Uncertainty in Nuclear Analytical Measurements that treats "Uncertainty in Measurements Close to Detection Limits" from the perspective of the IUPAC and ISO recommendations. The first part of this article serves as a review of these international developments during the last quinquennium of the twentieth century. Despite the achievement of international consensus on these contentious matters, many challenges remain. One quickly discovers this in the practical world of high stakes, ultra-trace analysis, where complications are introduced by the nature and distribution of the blank, the variance function (σ vs. concentration), non-linear models, and hidden algorithms and data evaluation/reporting schemes. Some of these issues are illustrated through a multidisciplinary case study of fossil and biomass burning aerosol at extremely low levels in the polar atmosphere and cryosphere, and by biased reporting practices for "non-detects."

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IUPAC Recommendations, 1995: Nomenclature in Evaluation of Analytical Methods, including Detection and Quantification Capabilities, prepared by L. A. Currie, Pure Appl. Chem., 67 (1995) 1699.

    Google Scholar 

  2. International Organization for Standardization, ISO/TC69/SC6 (P. Wilrich, chairman), Standard 11843–1,2 Capability of Detection, Part 1 (Standard): Terms and definitions (1997); Part-2 (Draft Standard): Methodology in the linear calibration case, 1998.

  3. IAEA TEC-DOC, Quantifying Uncertainty in Nuclear Analytical Measurements; Uncertainty in Measurements Close to Detection Limits (L. A. Currie), IAEA, 1999 (in press).

  4. F. Feigl, Mikrochemie, 1 (1923) 4.

    Google Scholar 

  5. H. Kaiser, Spectrochim. Acta, 3 (1947) 40.

    Google Scholar 

  6. G. Ehrlich, H. Mai, Z. Anal. Chem., 218 (1966) 1.

    Google Scholar 

  7. H. Kaiser, Z. Anal. Chem., 216 (1966) 80.

    Google Scholar 

  8. V. V. Nalimov, V. V. Nedler, N. P. Men'Shova, Zavodsk. Lab., 27 (1961) 861.

    Google Scholar 

  9. J. B. Roos, Analyst, 87 (1962) 832.

    Google Scholar 

  10. L. A. Currie, Anal. Chem., 40 (1968) 586.

    Google Scholar 

  11. R. Parr, H. Houtermans, H. Schaerf, The IAEA Intercomparison of Methods for Processing Ge(Li) Gamma-Ray Spectra, in: Computers in Activation Analysis and Gamma-ray Spectroscopy, US. Dept. of Energy, CONF-780421 (1979) 544.

  12. L. A. Currie, NBS J. Res., 90 (1986) 409.

    Google Scholar 

  13. G. L. Long, J. D. Winefordner, Anal. Chem., 55 (1983) 713A.

    Google Scholar 

  14. L. A. Currie, Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements, NUREG/CR-4007, Nuclear Regulatory Commission, September 1984.

  15. L. A. Currie, Detection: Overview of Historical, Societal and Technical Issues, Ch. 1 in: Detection in Analytical Chemistry: Importance, Theory, and Practice, L. A. Currie (Ed.), ACS Symp. Ser. 361, American Chemical Society, 1988.

  16. L. A. Currie, R. M. Parr, Perspectives on Detection Limits for Nuclear Measurements in Selected National and International Programs, Ch. 9 in: Detection in Analytical Chemistry: Importance, Theory, and Practice, L. A. Currie (Ed.), ACS Symp. Ser. 361, American Chemical Society, 1988.

  17. Reports of the CODEX Committee on Methods of Analysis and Sampling (CX/MAS 84/ et seq.) FAO/WHO Food Standards Program, Rome, Italy. See also, L. A. CURRIE, W. HORWITZ, Analusis, 22 (1994) M24.

  18. ISO-IUPAC, Deliberations on Nomenclature Related to Limits of Detection, Minutes of Nomenclature Harmonization Meeting, P.-Th. WILRICH (ISO), M. PARKANY, chairman (IUPAC), L. A. CURRIE rapporteur (IUPAC), Washington, DC, July 1993.

  19. R. D. Gibbons, Environ. Ecol. Statistics, 2 (1995) 125. (Discussants: K. Campbell; W. A. Huber; C. E. White and H. D. Kahn; B. K. Sinha, W. P. Smith and H. Lacayo; W. A. Telliard; and C. B. Davis.)

    Google Scholar 

  20. IUPAC Compendium of Analytical Nomenclature, 3rd ed., J. InczÉdy, A. M. Ure, T. Lengyel, A. GelencsÉr, (Eds), IUPAC, Blackwell Science Ltd, Oxford, 1998.

    Google Scholar 

  21. R. Michel, Quality assurance of nuclear analytical techniques based on Bayesian characteristic limits, this issue.

  22. J. M. Conny, C. J. Powell, L. A. Currie, Surface Interface Anal., 26 (1998) 939.

    Google Scholar 

  23. International Union of Pure and Applied Chemistry, H. Freiser, G. H. Nancollas, (Eds), Compendium of Analytical Nomenclature, 2nd ed., Blackwell Scientific Publ., Oxford, 1987, 1st ed., 1978.

    Google Scholar 

  24. International Organization for Standardization, Guide to the expression of uncertainty in measurement (GUM), Geneva, Switzerland, 1993.

  25. EURACHEM Guide, Quantifying uncertainty in analytical measurements, LGC Information Services, Teddington, Middlesex, 1995.

    Google Scholar 

  26. ISO 11929–5, 7, 8: Determination of detection limit and decision threshold for ionizing radiation measurements-parts 5, 7, 8; ISO/WD 1999.

  27. L. A. Currie, Chemometrics Intell. Lab. Systems, 37 (1997) 151.

    Google Scholar 

  28. L. A. Currie, G. A. Klouda, D. B. Klinedinst, Nucl. Instr. Meth. Phys. Res., B92 (1994) 404.

    Google Scholar 

  29. D. R. Cox, P. A. W. Lewis, The Statistical Analysis of Series of Events, Methuen & Co., London, 1968.

    Google Scholar 

  30. L. A. Currie, E. M. Eijgenhuijsen, G. A. Klouda, Radiocarbon, 40 (1998) 113.

    Google Scholar 

  31. S. PommÉ, P. Robouch, G. Arana, M. Eguskiza, M. I. Maguregui, Is it safe to use Poisson statistics in nuclear spectrometry?, this issue.

  32. T. Bayes, Radiat. Prot. Dosim., 82 (1999) 5, and references therein.

    Google Scholar 

  33. Workshop on Standards, Intercomparisons and Performance Evaluations for Low-level and Environmental Radionuclide Mass Spectrometry and Atom Counting, K. G. W. INN, (Organizer), NIST, 13–15 April 1999.

  34. NIST Certificate of Analysis for Standard Reference Material 1649, Urban Dust/Organics (Apr. 1982; Jan. 1992). Recertification, including added PAH and isotopic data: NIST Certificate of Analysis for Standard Reference Material 1649a. Nov. 1998.

  35. L. A. Currie, B. A. Benner, Jr., R. Cary, E. R. M. Druffel, T. I. Eglinton, P. C. Hartmann, J. D. Kessler, D. B. Klinedinst, G. A. Klouda, J. V. Marolf, C. A. Masiello, A. Pearson, J. G. Quinn, C. M. Reddy, J. F. Slater, S. A. Wise, Interlaboratory Data on Elemental and Isotopic Carbon in the Carbonaceous Particle Reference Material, NIST SRM 1649a, 1999 Goldschmidt Conf.: Symp. on Black Carbon in the Environment, 22–27 August 1999, Cambridge, MA.

  36. L. A. Currie, J. E. Dibb, G. A. Klouda, B. A. Benner, J. M. Conny, S. R. Biegalski, D. B. Klinedinst, D. R. Cahoon, N. C. Hsu, Radiocarbon, 40 (1998) 381.

    Google Scholar 

  37. L. A. Currie, Recent history and future challenges of 14C aerosol research, Proc. Intern. Workshop on Frontiers in Accelerator Mass Spectrometry, Tsukuba and Sakura, Japan, Jan. 1999, in press.

  38. Sympos. Summit Winter-Over Campaign, J. E. Dibb, organizer, American Geophysical Union (Dec. 1998); L. A. Currie, J. D. Kessler, J. F. Slater, J. F. Dibb, The Measurement of Aerosol Carbon Species in Greenland Snow Samples, EOS, Trans. (Amer. Geophys. Union) 79[45] (1998) F298.

  39. A. Pearson, A. P. McNichol, R. J. Schneider, K. F. Von Reden, Y. Zheng, Radiocarbon, 40 (1998) 61.

    Google Scholar 

  40. L. A. Currie, J. D. Kessler, J. V. Marolf, A. P. McNichol, D. R. Stuart, J. C. Donoghue, D. J. Donahue, G. S. Burr, D. Biddulph, Low-level (submicromole) Environmental 14C Metrology, 8th Intern. Conf. on Accelerator Mass Spectrometry, Vienna, Sept. 1999.

  41. Workshop on Research Needs for Air Quality Compliance: Diesels, Turbines, and Ordnance, Baltimore, 2,3 June 1999, Organized by the American Academy of Environmental Engineers, funded by the U.S. Department of Defense Strategic Environmental Research and Development Program.

  42. W. J. Mitchell, J. C. Suggs, Emissions Factors for the Disposal of Energetic Materials by Open Burning and Open Detonation, EPA/600/R-98/103, August 1998.

  43. Y. Gohshi, personal communication, August 1999.

  44. IUPAC Analytical Chemistry Division, 40th General Assembly, Berlin, August 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currie, L.A. Detection and Quantification Capabilities and the Evaluation of Low-Level Data: Some International Perspectives and Continuing Challenges. Journal of Radioanalytical and Nuclear Chemistry 245, 145–156 (2000). https://doi.org/10.1023/A:1006733415186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006733415186

Keywords

Navigation