Skip to main content
Log in

What is Different in Mixtures? From Critical Point to High Pressures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

It is well known that the properties of mixtures may be very different from those of the pure constituent components, due to the unlike forces. Even for mixtures composed of simple molecules, this behavior can be rather complicated at high pressures, where the system may exhibit gas–gas equilibrium, a critical double point and density inversions. A few mixtures such as He–H2 and He–N2 are discussed. It is demonstrated that Raman spectroscopy is an important tool not only for obtaining knowledge about the dynamical behavior of mixtures but also for determining phase equilibria at high pressures. The frequency shift, the linewidth, and the line shape provide information about the solubility, the state of aggregation, and other conditions of the system. Recently, a new type of compound has been found, the so-called van der Waals compound. The results obtained in simple mixtures, such as Ne–N2 and Xe–N2, are compared with the results of molecular dynamics (MD) simulations of hard sphere mixtures. It is pointed out that energy, and not a geometrical effect (or entropy), is the driving force for compound formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. B. Streett and A. L. Erikson, Phys. Earth Plan. Int. 5:357 (1972).

    Google Scholar 

  2. L. C. van den Berg, J. A. Schouten, and N. J. Trappeniers, Physica A 132:549 (1985).

    Google Scholar 

  3. J. A. Schouten, L. C. van den Berg, and N. J. Trappeniers, Chem. Phys. Lett. 114:401 (1985).

    Google Scholar 

  4. L. C. van den Berg and J. A. Schouten, J. Chem. Phys. 89:2336 (1988).

    Google Scholar 

  5. M. G. E. van Hinsberg, R. Verbrugge, and J. A. Schouten, Fluid Phase Equil. 88:115 (1993).

    Google Scholar 

  6. M. Ross, J. Chem. Phys. 71:1567 (1979).

    Google Scholar 

  7. W. Zhang, Thesis (University of Amsterdam, Amsterdam, 1996).

    Google Scholar 

  8. K. Shukla, Fluid Phase Equil. 99:153 (1994).

    Google Scholar 

  9. J. A. Schouten, M. G. E. van Hinsberg, M. I. M. Scheerboom, and J. P. J. Michels, J. Phys. Condens. Matter 6:A187 (1994).

    Google Scholar 

  10. J. A. Schouten and L. C. van den Berg, Fluid Phase Equil. 32:1 (1986).

    Google Scholar 

  11. W. L. Vos, L. C. van den Berg, and J. A. Schouten, Int. J. Thermophys. 10:15 (1989).

    Google Scholar 

  12. K. S. Schweizer and D. Chandler, J. Chem. Phys. 76:2296 (1982).

    Google Scholar 

  13. G. S. Devendorf and D. Ben-Amotz, J. Phys. Chem. 97:2307 (1993).

    Google Scholar 

  14. J. P. J. Michels, M. I. M. Scheerboom, and J. A. Schouten, J. Chem. Phys. 105:9748 (1996).

    Google Scholar 

  15. J. P. J. Michels and J. A. Schouten, Int. J. Thermophys. (in press).

  16. M. E. Kooi and J. A. Schouten, Phys. Rev. B57:10407 (1998).

    Google Scholar 

  17. M. E. Kooi and J. A. Schouten, Phys. Rev. B60:12635 (1999).

    Google Scholar 

  18. A. Deerenberg, J. A. Schouten, and N. J. Trappeniers, Physica A 103:183 (1980).

    Google Scholar 

  19. R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2:1047 (1970).

    Google Scholar 

  20. M. I. M. Scheerboom and J. A. Schouten, Phys. Rev. E 51:R2747 (1995).

    Google Scholar 

  21. W. Hume-Rotary, G. W. Mabbott, and K. M. Channel-Evans, Phil. Trans. Roy. Soc. A 233:1 (1934).

    Google Scholar 

  22. W. G. T. Kranendonk and D. Frenkel, Mol. Phys. 72:679 (1991).

    Google Scholar 

  23. M. D. Eldridge, P. A. Madden, and D. Frenkel, Nature 365:35 (1993).

    Google Scholar 

  24. X. Cottin and P. A. Monson, J. Chem. Phys. 102:3354 (1995).

    Google Scholar 

  25. W. L. Vos, L. W. Finger, R. J. Hemley, J. Z. Hu, H. K. Mao, and J. A. Schouten, Nature 358:46 (1992).

    Google Scholar 

  26. M. S. Somyazulu, L. W. Finger, R. J. Hemley, and H. K. Mao, Science 271:1400 (1996).

    Google Scholar 

  27. J. A. Schouten and M. E. Kooi, in High Pressure Molecular Science, NATO Sci. Ser. E, Vol. 358, R. Winter and J. Jonas, eds. (Kluwer, Dordrecht, 1999), p. 187.

    Google Scholar 

  28. P. Loubeyer, in The Properties of Simple Molecular Binary Mixtures at High Density: A Qualitative Understanding, R. Pucci and G. Picitto, eds. (Elsevier, Amsterdam, 1991), p. 245.

    Google Scholar 

  29. W. L. Vos and J. A. Schouten, Sov. J. Low Temp. Phys. 19:481 (1993).

    Google Scholar 

  30. W. L. Vos and J. A. Schouten, Phys. Rev. Lett. 64:898 (1990).

    Google Scholar 

  31. H. Olijnyk and A. P. Jephcoat, J. Phys. Condens. Matter 9:11219 (1997).

    Google Scholar 

  32. L. D. Yantsevich, A. I. Prokhvatilov, and A. P. Brodyanskii, J. Low. Temp. Phys. 111:429 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schouten, J.A. What is Different in Mixtures? From Critical Point to High Pressures. International Journal of Thermophysics 22, 23–40 (2001). https://doi.org/10.1023/A:1006732330320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006732330320

Navigation