Skip to main content
Log in

Methods of Quantum Field Theory in the Physics of Subsurface Solute Transport

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The stochastic theory of subsurface solute transport has received stimulus recently from modeling techniques originating in quantum field theory (QFT), resulting in new calculations of the solute macrodispersion tensor that derive from the solving Dyson equation with a subsequent renormalization group analysis. In this paper, we offer a critical evaluation of these techniques as they relate specifically to the derivation of a field-scale advection–dispersion equation. An approximate Dyson equation satisfied by the ensemble-average solute concentration for tracer movement in a heterogeneous porous medium is derived and shown to be equivalent to a truncated cumulant expansion of the standard stochastic partial differential equation which describes the same phenomenon. The full Dyson equation formalism, although exact, is of no importance to the derivation of an improved field-scale advection–dispersion equation. Similarly, renormalization group analysis of the macrodispersion tensor has not yet provided results that go beyond what is available currently from the cumulant expansion approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avellaneda, M. and Majda, A. G.: 1992, Approximate and exact renormalization theories for a model for turbulent transport, Phys. Fluids A 4, 41-57.

    Google Scholar 

  • Cannon, J. R.: 1984, The One-Dimensional Heat Equation, Addison-Wesley, Menlo Park, CA.

    Google Scholar 

  • Chu, S.-Y. and Sposito, G.: 1980, 1981, A derivation of the macroscopic solute transport equation for homogeneous, saturated, porous media, Water Resour. Res. 16, 542-546, 17, 1238.

    Google Scholar 

  • Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer, New York.

    Google Scholar 

  • Dagan, G.: 1998, Comment on “Renormalization group analysis of macrodispersion in a directed random flow” by U. Jaekel and H. Vereecken, Water Resour. Res. 34, 3197-198.

  • Dean, D. S., Drummond, I. T. and Horgan, R. R.: 1994, Perturbation schemes for flow in random media, J. Phys. A 27, 5135-5144.

    Google Scholar 

  • Dean, D. S., Drummond, I. T. and Horgan, R. R.: 1995, Perturbation theory for effective diffusivity in random gradient flows, J. Phys. A 28, 1235-1242.

    Google Scholar 

  • Dean, D. S., Drummond, I. T. and Horgan, R. R.: 1996, Renormalization of drift and diffusivity in random gradient flows, J. Phys. A 29, 7867-7879.

    Google Scholar 

  • Eyink, G. L.: 1994, The renormalization group method in statistical hydrodynamics, Phys. Fluids 6, 3063-3078.

    Google Scholar 

  • Fox, R. F.: 1976, Critique of the generalized cumulant expansion method, J. Math. Phys. 17, 1148-1153.

    Google Scholar 

  • Gelhar, L. W. and Axness, C. L.: 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19, 161-180.

    Google Scholar 

  • Glimm, J., Lindquist, W. B., Pereira, F. and Zhang, Q.: 1993, A theory of macrodispersion for the scale-up problem, Transport in Porous Media 13, 97-122.

    Google Scholar 

  • Gutjahr, A.: 1984, Stochastic models of subsurface flow: Log linearized Gaussian models are 'exact' for covariances, Water Resour. Res. 20, 1909-1912.

    Google Scholar 

  • Hristopulos, D. T. and Christakos, G.: 1997, Diagrammatic theory of effective hydraulic conductivity, Stoch. Hydrol. Hydraul. 11, 369-395.

    Google Scholar 

  • Jaekel, U. and Vereecken, H.: 1997, Renormalization group analysis of macrodispersion in a directed random flow, Water Resour. Res. 33, 2287-2299.

    Google Scholar 

  • Jaekel, U., Schwarze, H. and Vereecken, H.: 1998, Reply, Water Resour. Res. 34, 3199-3200.

    Google Scholar 

  • Kabala, Z. J. and Sposito, G.: 1991, A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer, Water Resour. Res. 27, 341-350.

    Google Scholar 

  • Kabala, Z. J. and Sposito, G.: 1998, Technical comment on: “On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers,” by M.L. Kavvas and A. Karakas, J. Hydrol. 207, 136-138.

  • Kavvas, M. L. and Karakas, A.: 1996, On the stochastic theory of solute transport by unsteady and steady groundwater flow in heterogeneous aquifers, J. Hydrol. 179, 321-325.

    Google Scholar 

  • Kavvas, M. L. and Karakas, A.: 1998, Response to comments of Z. J. Kabala and G. Sposito, J. Hydrol. 207, 139-143.

    Google Scholar 

  • King, P. R.: 1987, The use of field theoretic methods for the study of flow in a heterogeneous porous medium, J. Phys. A 20, 3935-3947.

    Google Scholar 

  • King, P. R.: 1989, The use of renormalization for calculating effective permeability, Transport in Porous Media 4, 37-58.

    Google Scholar 

  • King, P. R., Muggeridge, A. H. and Price, W. G.: 1993, Renormalization calculations of immiscible flow, Transport in Porous Media 12, 237-260.

    Google Scholar 

  • King, P. R.: 1996, Upscaling permeability: Error analysis for renormalization, Transport in Porous Media 23, 337-354.

    Google Scholar 

  • Kubo, R.: 1962, Generalized cumulant expansion method, J. Phys. Soc. Japan, 17, 1100-1120.

    Google Scholar 

  • Kubo, R.: 1963, Stochastic Liouville equations, J. Math. Phys. 4, 174-183.

    Google Scholar 

  • Ma, S.-K.: 1976, Modern Theory of Critical Phenomena, Benjamin, Reading, MA.

    Google Scholar 

  • Matheron, G. and de Marsily, G.: 1980, Is transport in porous media always diffusive? A counterexample, Water Resour. Res. 16, 901-917.

    Google Scholar 

  • McComb, W. D.: 1992, The Physics of Fluid Turbulence, Clarendon Press, Oxford, UK.

    Google Scholar 

  • Nötinger, B. and Gautier, Y.: 1998, Use of the Fourier-Laplace transform and of diagrammatical methods to interpret pumping tests in heterogeneous reservoirs, Advan. Water Resour. 21, 581-590.

    Google Scholar 

  • Peskin, M. E. and Schroeder, D. V.:1995, An Introduction to Quantum Field Theory, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Rehfeldt, K. R. and Gelhar, L. W.: 1992, Stochastic analysis of dispersion in unsteady flow in heterogeneous aquifers, Water Resour. Res. 28, 2085-2099.

    Google Scholar 

  • Reichl, L. E.: 1988, A Modern Course in Statistical Physics, Univ. of Texas Press, Austin, TX, pp. 435-437.

    Google Scholar 

  • Smith, L. M. and Woodruff, S. L.: 1998, Renormalization-group analysis of turbulence, Annu. Rev. Fluid Mech. 30, 275-310.

    Google Scholar 

  • Sposito, G., Jury, W. A. and Gupta, V. K.: 1986, Fundamental problems in the stochastic convectiondispersion model of solute transport in aquifers and field soils, Water Resour. Res. 22, 77-88.

    Google Scholar 

  • Sposito, G. and Barry, D. A.: 1987, On the Dagan model of solute transport in groundwater: Foundational aspects, Water Resour. Res. 23, 1867-1875.

    Google Scholar 

  • Sposito, G., Barry, D. A. and Kabala, Z. J.: 1991, Stochastic differential equations in the theory of solute transport through inhomogeneous porous media, Advan. Porous Media 1, 295-309.

    Google Scholar 

  • Sposito, G.: 1999, The statistical physics of subsurface solute transport, Chapter 3 in: M. Parlange and J.W. Hopmans (eds.), Vadose Zone Hydrology: Cutting Across Disciplines, Oxford University Press, New York.

    Google Scholar 

  • Terwiel, R. J.: 1974, Projection operator method applied to stochastic linear differential equations, Physica 74, 248-265.

    Google Scholar 

  • van Kampen, N. G.: 1974, A cumulant expansion for stochastic linear differential equations, Physica 74, 215-247.

    Google Scholar 

  • van Kampen, N. G.: 1976, Stochastic differential equations, Phys. Rept. 24, 171-228.

    Google Scholar 

  • Wood, B. D.: 1998, A connection between the Lagrangian stochastic-convective and cumulant expansion approaches for describing solute transport in heterogeneous porous media, Advan. Water Resour. 22, 319-332.

    Google Scholar 

  • Wood, B. D. and Kavvas, M. L.: 1999, Ensemble-averaged equations for reactive transport in porous media under unsteady flow conditions, Water Resour. Res. 35, 2053-2068.

    Google Scholar 

  • Zagoskin, A. M.: 1998, Quantum Theory of Many-Body Systems Springer, New York.

    Google Scholar 

  • Zhang, Q.:1995, The asymptotic scaling behavior of mixing induced by a random velocity field, Advan. Appl. Maths. 16, 23-58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sposito, G. Methods of Quantum Field Theory in the Physics of Subsurface Solute Transport. Transport in Porous Media 42, 181–198 (2001). https://doi.org/10.1023/A:1006724801223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006724801223

Navigation