Skip to main content
Log in

Impact of Experimental Timescale and Geometry on Thin-Film Thermal Property Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Integrated circuits require effective removal of increasing heat fluxes from active regions. Thermal conduction strongly influences the performance of micromachined devices including thermal actuators, Peltier-effect coolers, and bolometers. The simulation of these devices requires thermal property data for the thin-film materials from which they are made. While there are many measurement techniques available, it is often difficult to identify the most appropriate for a device. This article reviews thin-film thermal characterization methods with an emphasis on identifying the properties extracted by the techniques. The characteristic timescale of heating and the geometry of the experimental structure govern the sensitivity of the data to the in-plane and out-of-plane conductivities, the volumetric heat capacity, and the interface resistances of the film. Measurement timescales and geometry also dictate the material volume probed most sensitively within the film. This article uses closed-form and numerical modeling to classify techniques according to the properties they measure. Examples of reliably extracted properties are provided for some experimental configurations. This article simplifies the process of choosing the best characterization technique for a given application in microdevice thermal design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. E. Goodson and Y. S. Ju, Annu. Rev. Mater. Sci. 29:261 (1999).

    Google Scholar 

  2. J. M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960), pp. 450-474.

    Google Scholar 

  3. K. E. Goodson, M. I. Flik, S. T. Su, and D. A. Antoniadis, ASME J. Heat Transfer 116:317 (1994).

    Google Scholar 

  4. Y. S. Ju and K. E. Goodson, J. Appl. Phys. 85:7130 (1999).

    Google Scholar 

  5. K. E. Goodson and M. I. Flik, Appl. Mech. Rev. 47:101 (1994).

    Google Scholar 

  6. D. G. Cahill, Microsc. Therm. Eng. 1:85 (1997).

    Google Scholar 

  7. D. G. Cahill, H. E. Fischer, T. Klitsber, E. T. Swartz, and R. O. Pohl, J. Vac. Sci. Technol. A 7:1259 (1989).

    Google Scholar 

  8. E. T. Swartz and R. O. Pohl, Rev. Modern Phys. 61:605 (1989).

    Google Scholar 

  9. J. E. Graebner, Diamond Films Technol. 3:77 (1993).

    Google Scholar 

  10. K. Plamann and D. Fournier, Diamond Rel. Mater. 4:809 (1995).

    Google Scholar 

  11. M. N. Touzelbaev and K. E. Goodson, Diamond Rel. Mater. 7:1 (1998).

    Google Scholar 

  12. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman Hall, London, 1996), pp. 199-217.

    Google Scholar 

  13. E. T. Swartz and R. O. Pohl, Appl. Phys. Lett. 51:2200 (1987).

    Google Scholar 

  14. M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, SME J. Heat Transfer 120:30 (1998).

    Google Scholar 

  15. H. A. Schafft, J. S. Suehle, and P. G. A. Mirel, Proc. IEEE Int. Conf. Microelectron. Test Struct. 2:121 (1989).

    Google Scholar 

  16. F. R. Brotzen, P. J. Loos and D. P. Brady, Thin Solid Films 207:197 (1992).

    Google Scholar 

  17. D. G. Cahill, Rev. Sci Instrum. 61:802 (1990).

    Google Scholar 

  18. D. G. Cahill and R. O. Pohl, Phys. Rev. B 35:4067 (1987).

    Google Scholar 

  19. D. G. Cahill and T. H. Allen, Appl. Phys. Lett. 65:309 (1994).

    Google Scholar 

  20. D. G. Cahill, M. Katiar, and J. R. Abelson, Phys. Rev. B 50:6077 (1994).

    Google Scholar 

  21. S.-M. Lee and D. G. Cahill, J. Appl. Phys. 81:2590 (1997).

    Google Scholar 

  22. K. Kurabayashi, M. Asheghi, M. Touzelbaev, and K. E. Goodson, J. Microelectromech. Syst. 8:180 (1999).

    Google Scholar 

  23. Y. S. Ju and K. E. Goodson, J. Appl. Phys. 85:7130 (1999).

    Google Scholar 

  24. K. Kurabayashi, M. Touzelbaev, M. Asheghi, Y. S. Ju, and K. E. Goodson, submitted for publication.

  25. J. H. Kim, A. Feldman, and D. Novotny, J. Appl. Phys. 86:3959 (1999).

    Google Scholar 

  26. O. W. Kaeding, H. Skurk, and K. E. Goodson, Appl. Phys. Lett. 65:1629 (1994).

    Google Scholar 

  27. H. Verhoeven, E. Boettger, A. Flöter, H. Reiß, and R Zachai, Diamond Relat. Mater. 6:298 (1997).

    Google Scholar 

  28. H. Verhoeven, A. Flöter, H. Reiß, R Zachai, D. Wittorf, and W. Jäger, Appl. Phys. Lett. 71:1389 (1997).

    Google Scholar 

  29. W. S. Capinski and H. J. Maris, Rev. Sci. Instrum. 67:2720 (1996).

    Google Scholar 

  30. R. J. Stoner and H. J. Maris, Phys. Rev. B 48:16373 (1993).

    Google Scholar 

  31. W. S. Capinski, H. J. Maris, E. Bauser, I. Silier, M. Asen-Palmer, T. Ruf, M. Gardona, and E. Gmelin, Appl. Phys. Lett. 71:2109 (1997).

    Google Scholar 

  32. W. S. Capinski, H. J. Maris, E. Bauser, T. Ruf, M. Gardona, K. Ploog, and D. S. Katzer, Phys. Rev. B 59:8105 (1999).

    Google Scholar 

  33. C. J. Morath, H. J. Maris, J. J. Cuomo, D. L. Pappas, A. Grill, V. P. Patel, J. P. Doyle, and K. L. Saenger, J. Appl. Phys. 76:2636 (1994).

    Google Scholar 

  34. G. Chen and P. Hui, Thin Solid Films 339:58 (1998).

    Google Scholar 

  35. O. W. Kaeding, H. Skurk, A. A. Maznev, and E. Matthias, Appl. Phys. A 61:253 (1995).

    Google Scholar 

  36. O. W. Kaeding, E. Matthias, R. Zachai, H.-J. Füßer, and P. Münzinger, Diamond. Relat. Mater. 2:1185 (1993).

    Google Scholar 

  37. J. E. Graebner, Rev. Sci. Instrum. 66:3903 (1995).

    Google Scholar 

  38. I. Hatta, Rev. Sci Instrum. 56:1643 (1985).

    Google Scholar 

  39. A. C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36:130 (1980).

    Google Scholar 

  40. T. Yao, Appl. Phys. Lett. 51:1798 (1987).

    Google Scholar 

  41. E. P. Visser, E. H. Versteegen, and W. J. P. van Enckevort, J. Appl. Phys. 71:3238 (1992).

    Google Scholar 

  42. G. Chen, C. L. Tien, X. Wu, and J. S. Smith, ASME J. Heat Transfer 116:325 (1994).

    Google Scholar 

  43. T. Kemp, T. A. S. Srinivas, R. Fettig, and W. Ruppel, Rev. Sci. Instrum. 66:176 (1995).

    Google Scholar 

  44. G. Langer, J. Hartmann, and M. Reichling, Rev. Sci. Instrum. 68:1510 (1997).

    Google Scholar 

  45. M. Reichling and H. Grönbeck, J. Appl. Phys. 75:914 (1994).

    Google Scholar 

  46. J. Hartmann, P. Voigt, and M. Reichling, J. Appl. Phys. 81:2966 (1997).

    Google Scholar 

  47. M. Bertolotti, G. L. Liakhou, R. Li Voti, S. Paoloni, and C. Sibilia, J. Appl. Phys. 83:966 (1998).

    Google Scholar 

  48. H. Shibata, H. Ohta, and Y. Waseda, JIM Mater. Trans. 32:837 (1991).

    Google Scholar 

  49. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959).

    Google Scholar 

  50. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970).

    Google Scholar 

  51. K. E. Goodson, Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, MA, 1993).

    Google Scholar 

  52. M. Nonnenmacher and H. K. Wickramasinghe, Appl. Phys. Lett. 61:168 (1992).

    Google Scholar 

  53. M. Maywald, R. J. Pylkki, and L. J. Balk, Scan. Microsc. 8:181 (1994).

    Google Scholar 

  54. C. C. Williams and H. K. Wickramasinghe, Appl. Phys. Lett. 49:1587 (1986).

    Google Scholar 

  55. K. E. Goodson and M. Asheghi, Microsc. Therm. Eng. 1:225 (1997).

    Google Scholar 

  56. G. B. M. Fiege, A. Altes, A. Heiderhoff, and L. J. Balk, J. Phys. D 32:L13 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touzelbaev, M.N., Goodson, K.E. Impact of Experimental Timescale and Geometry on Thin-Film Thermal Property Measurements. International Journal of Thermophysics 22, 243–263 (2001). https://doi.org/10.1023/A:1006724123069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006724123069

Navigation