Skip to main content
Log in

The Physics and Radiochemistry of Solar Neutrino Detectors: What Have We Learned and What Can We Expect?

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The situation in solar neutrino science has changed drastically in the past decade, with results now available from five neutrino experiments that use different methods to look at different regions of the solar-neutrino energy-spectrum. While the goal of all of these experiments is physics, they all rely heavily on chemistry and radiochemistry. Three of these experiments are radiochemical, the 37Cl detector and the two different forms of 71Ga detectors used in GALLEX and SAGE are based on the chemical isolation and counting of the radioactive products of neutrino interactions. The other two, Kamiokande and its improved successor, Super- Kamiokande, detect neutrinos in real time; however, they also depend sensitively on radiochemistry in that (as in all the solar neutrino detectors) radioactive contaminants must be controlled at very low levels. It is noteworthy that all of these experiments (a) have detected solar neutrinos, but (b) all report deficits of the observed neutrinos relative to the predictions of standard solar models — the so-called "solar neutrino problem". In this paper, I review the basic principles of operation of these neutrino detectors, report their recent results, and discuss some of the interpretations that are now in vogue. I then describe some of the new neutrino detectors that are under construction or being developed, and discuss the kinds of new results we might expect to see in the early years of the new millennium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Rowley, B. T. Cleveland, R. Davis, AIP Conf. Proc. No. 126, Solar Neutrinos and Astronomy, M. L. Cherry, K. Lande, W. A. Fowler (Eds), AIP, New York, 1985, p. 1.

    Google Scholar 

  2. K. S. Hirata et al., Phys. Rev. Lett., 65 (1990) 1297.

    PubMed  Google Scholar 

  3. K. S. Hirata et al., Phys. Rev. Lett., 66 (1991) 9.

    PubMed  Google Scholar 

  4. GALLEX Collaboration: P. Anselmann et al., Phys. Lett., B285 (1992) 376.

    Google Scholar 

  5. SAGE Collaboration: A. I. Abazov et al., Phys. Rev. Lett., 67 (1991) 3332.

    PubMed  Google Scholar 

  6. G. Aardsma et al., Phys. Lett., B194 (1987) 321.

    Google Scholar 

  7. SNO Collaboration: J. Boger et al., Nucl. Instr. Meth. A, in press.

  8. L. Oberauer for the Borexino Collaboration, Proc. 18th Intern. Conf. on Neutrino Physics and Astrophysics, Takayama, Japan, Y. Suzuki and Y. Totsuka (Eds), Nucl. Phys., B (Proc. Suppl.) 77 (1999) 48.

  9. K. Lande et al., Proc. 18th Intern. Conf. on Neutrino Physics and Astrophysics, Takayama, Japan, Y. Suzuki and Y. Totsuka (Eds), Nucl. Phys., B (Proc. Suppl.) 77 (1999) 13.

  10. J. N. Bahcall, Neutrino Astrophysics, Cambridge University Press, Cambridge, England, 1989.

    Google Scholar 

  11. J. N. Bahcall, M. H. Pinsonneault, Rev. Mod. Phys., 64 (1992) 885.

    Google Scholar 

  12. J. N. Bahcall, S. Basu, M. H. Pinsonneault, Phys. Lett., B433 (1998) 1.

    Google Scholar 

  13. B. T. Cleveland et al., ApJ, 496 (1998) 505.

    Google Scholar 

  14. See, e.g., J. N. Bahcall et al., Nature, 327 (1987) 682.

    Google Scholar 

  15. Y. Suzuki, Proc. 17th Intern. Conf. on Neutrino Physics and Astrophysics, Helsinki, Finland, K. Enqvist, K. Huttu and J. Maalampi (Eds), World Scientific, Singapore, 1997, p. 73.

    Google Scholar 

  16. Y. Suzuki, for the Super-Kamiokande Collaboration, Proc. 18th Intern. Conf. on Neutrino Physics and Astrophysics, Takayama, Japan, Y. Suzuki and Y. Totsuka (Eds), Nucl. Phys., B (Proc. Suppl.) 77 (1999) 35.

  17. Y. Fukuda et al., Phys. Rev. Lett., 77 (1996) 1683.

    PubMed  Google Scholar 

  18. See, e.g., I. Dostrovsky, Proc. of an Informal Conf. on Status and Future of Solar Neutrino Research, G. Friedlander (Ed.), Brookhaven National Laboratory Report BNL-50879, 1978, p. 231.

  19. J. K. Rowley, R. W. Stoenner, Brookhaven National Laboratory Report BNL-40818, 1987.

  20. E. Henrich, K. H. Ebert, Angew. Chem., Int. Ed., 31 (1992) 1283.

    Google Scholar 

  21. GALLEX Collaboration: P. Anselmann et al., Phys. Lett., B285 (1992) 390.

    Google Scholar 

  22. GALLEX Collaboration: W. Hampel et al., Phys. Lett., B447 (1999) 127.

    Google Scholar 

  23. SAGE Collaboration: J. N. Abdurashitov et al., astroph/9907131 (11.7.99) and Phys. Rev. C, in press.

  24. GALLEX Collaboration: W. Hampel et al., Phys. Lett., B420 (1999) 114.

    Google Scholar 

  25. SAGE Collaboration: J. N. Abdurashitov et al., Phys. Rev. Lett., 77 (1996) 4708.

    PubMed  Google Scholar 

  26. GALLEX Collaboration: M. Cribier et al., Nucl. Instr. Meth., A378 (1996) 233.

    Google Scholar 

  27. GALLEX Collaboration: W. Hampel et al., Phys. Lett., B436 (1998) 158.

    Google Scholar 

  28. J. N. Bahcall, P. I. Krastev, A. Yu. Smirnov, Phys. Rev., D58, 096016 (1998) 2.

    Google Scholar 

  29. L. Wolfenstein, Phys. Rev. D20 (1979) 2634; S. P. Mikheyev, A. Yu. Smirnov, Sov. J. Nucl. Phys., 42 (1985) 1441.

    Google Scholar 

  30. M. Vagins, Super-Kamiokande Collaboration, private communication, 1999.

  31. T Kajita for the Super-Kamiokande Collaboration, Proc. 18th Intern. Conf. on Neutrino Physics and Astrophysics, Takayama, Japan, Y. Suzuki and Y. Totsuka (Eds), Nucl. Phys., B (Proc. Suppl) 77 (1999) 123.

  32. R. Raghavan, R. Von Hentig, private communications.

  33. T. Kirsten, Rev. Mod. Phys., 71 (1999) 1213.

    Google Scholar 

  34. Review of Particle Physics, Phys. Rev., D54 (1996), 1; Eur. Phys. J., C3 (1998) 1.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, R.L. The Physics and Radiochemistry of Solar Neutrino Detectors: What Have We Learned and What Can We Expect?. Journal of Radioanalytical and Nuclear Chemistry 243, 93–107 (2000). https://doi.org/10.1023/A:1006719314411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006719314411

Keywords

Navigation