ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids

  • Wolfram H.-P. Thiemann
  • Uwe Meierhenrich


New crucial theoretical investigations on the origin of biomolecular chirality are reviewed briefly. With the goal to investigate these theories our team is going to perform the `chirality-experiment' in the near future with cometarymatter. In 2012 the robotical lander RoLand will detach fromthe orbiter of the ROSETTA spacecraft and set down on the surface of comet 46P/Wirtanen in order to separate andidentify cometary organic compounds via GC-MS in situ.Chiral organics will be separated into their enantiomers by application of 3 capillary columns coated with different kindsof stationary phases. Non-volatile compounds like amino acidswill be derivatized in especially developed gas phasealkylation steps avoiding reactions in the liquid phase. Theresults of these preliminary gas phase reactions are presentedin this article.

amino acid asymmetric synthesis chirality COSAC cyclodextrin derivatization enantiomer separation gas chromatography origin of optical activity Rosetta 46P/Wirtanen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, J., Chrysostomou, A., Hough, J. H., Gledhill, T. M., McCall, A., Clark, S., Ménard, F. and Tamura, M.: 1998, Circular Polarization in Star-Formation Regions: Implications for Biomolecular Homochirality, Science 281, 672–674.Google Scholar
  2. Bailey, J.: 1999, Astronomical Sources of Circular Polarization and the Origin of Homochirality, ISSOL'99 Conference 12–16 July, c2.4 p.41, San Diego, USA.Google Scholar
  3. Barnes, S., Waldrop, R. and Pritchard, D. G.: 1982, Flash Heater Derivatization of Unconjugated Bile Acids Using Trimethylanilinium Hydroxide, J. Chromatogr. 231, 155–160.Google Scholar
  4. Bernstein, M. P., Sandford, S. A., Allamandola, L. J., Gillette, J. S., Clemett, S. J. and Zare, R. N.: 1999a, UV Irradiation of Polycyclic Aromatic Hydrocarbons in Ices: Production of Alcohols, Quinones, and Ethers, Science 283, 1135–1138.Google Scholar
  5. Bernstein, M. P., Sandford, S. A. and Allamandola, L. J.: 1999b, Life's Far-Flung Raw Materials, Sci. Am. 7, 26–33.Google Scholar
  6. Bonner, W. A.: 1992, Terrestrial and Extraterrestrial Sources of Molecular Homochirality, Orig. Life Evol. Biosphere 21, 407–420.Google Scholar
  7. Bonner, W. A. and Rubenstein, E.: 1987, Supernovae, Neutron Stars and Biomolecular Chirality, BioSystems 20, 99–111.Google Scholar
  8. Bonner, W. A., Rubenstein, E. and Brown, G. S.: 1999, Extraterrestrial Handedness: A Reply, Orig. Life Evol. Biosphere 29, 329–332.Google Scholar
  9. Brack, A.: 1999, The Role of Autocatalysis in the Transition of Matter from Abiotic to Biotic. 212. WE-Heraeus-Seminar, Chemie im Weltall-Wege zu Bausteinen des Lebens, 13–15 January, Bad Honnef, Germany.Google Scholar
  10. Chiang, T.-C.: 1980, Gas Chromatographic-Mass Spectrometric Assay for Low Levels of Retinoic Acid in Human Blood, J. Chromatogr. 181, 335–340.Google Scholar
  11. Condon, E. U.: 1937, Theories of Optical Rotatory Power, Rev. Mod. Phys. 9, 432–457.Google Scholar
  12. Ehrenfreund, P.: 1999a, Molecules on a Space Odyssey, Science 283, 1123–1124.Google Scholar
  13. Ehrenfreund, P.: 1999b, From Interstellar Dust Via Comets to Life? ISSOL'99 Conference 12–16 July, c5.4 p.60, San Diego, USA.Google Scholar
  14. Huebner, W. F. and Boyce, D. C.: 1992, Comets as a Possible Source of Prebiotic Molecules, Orig. Life Evol. Biosphere 21, 299–315.Google Scholar
  15. Idelson, M. and Blout, E. R.: 1958, A Kinetic Study of the Polymerization of Amino Acid N-Carboxyanhydrides Initiated by Strong Bases, J. Amer. Chem. Soc. 80, 2387–2393.Google Scholar
  16. Jessberger, E. K., Christoforidis, A. and Kissel, J.: 1988, Aspects of the Major Element Composition of Halley's Dust, Nature 332, 691–695.Google Scholar
  17. Jorda, L. and Rickman, H.: 1995, Comet P/Wirtanen, Summary of Observational Data, Planet. Space Sci. 43, 575–579.Google Scholar
  18. Joyce, G. F., Visser, G. M., van Boeckel, C. A. A., van Boom, J. H., Orgel, L. E. and van Westrenen, J.: 1984, Chiral Selection in Poly(C)-Directed Synthesis of Oligo(G), Nature 310, 602–604.Google Scholar
  19. Keszthelyi, L.: 1984, Parity Violation as a Source of Chirality in Nature, Orig. Life 14, 375–382.Google Scholar
  20. Khasanov, M. M. and Gladyshev, G. P.: 1980, Optical Activity and Evolution, Orig. Life Evol. Biosphere 10, 247–254.Google Scholar
  21. Kissel, J., Sagdeev, R. Z., Bertaux, J. L., Angarov, V. N., Audouze, J., Blamont, J. E., Büchler, K., Evlanov, E. N., Fechtig, H., Fomenkova, M. N., von Hoerner, H., Inogamov, N. A., Khromov, V. N., Knabe, W., Krueger, F. R., Langevin, Y., Leonas, V. B., Levasseur-Regourd, A. C., Managadze, G. G., Podkolzin, S. N., Shapiro, V. D., Tabaldyev, S. R. and Zubkov, B. V.: 1986a, Composition of Comet Halley Dust Particles from Vega Observations, Nature 321, 280–282.Google Scholar
  22. Kissel, J., Brownlee, D. E., Büchler, K., Clark, B. C., Fechtig, H., Grün, E., Hornung, K., Igenbergs, E. B., Jessberger, E. K., Krueger, F. R., Kuczera, H., McDonnell, J. A. M., Morfill, G. M., Rahe, J., Schwehm, G. H., Sekanina, Z., Utterback, N. G., Völk, H. J. and Zook, H. A.: 1986b, Composition of Comet Halley Dust Particles from Giotto Observations, Nature 321, 336–337.Google Scholar
  23. Kissel, J. and Krueger, F. R.: 1987, The Organic Component in Dust from Comet Halley asMeasured by the PUMA Mass Spectrometer on Board Vega 1, Nature 326, 755–760.Google Scholar
  24. Kuhn, W.: 1930, The Physical Significance of Optical Rotatory Power, Trans. Faraday Soc. 26, 293–310.Google Scholar
  25. Kullman, J. P., Chen, X. and Armstrong, D. W.: 1999, Evaluation of the Enantiomeric Composition of Amino Acids in Tobacco, Chirality 11, 669–673.Google Scholar
  26. Lee, T. D. and Yang, C. N.: 1956, Question of Parity Conservation in Weak Interactions, Phys. Rev. 104, 254–258.Google Scholar
  27. Lundberg, R. D. and Doty, P.: 1957, A Study of the Kinetics of the Primary Amine-Initiated Polymerization of N-Carboxy-Anhydrides with Special Reference to Configurational and Stereochemical Effects, J. Amer. Chem. Soc. 79, 3961–3972.Google Scholar
  28. MacDermott, A. J. and Tranter, G. E.: 1989, Electroweak Bioenantioselection, Croatica Chem. Acta 62, 165–187.Google Scholar
  29. MacDermott, A. J.: 1993, The Weak Force and the Origin of Life, in Ponnamperuma, C. and Chela-Flores, J. (eds), Chemical Evolution: Origin of Life, 85–99. A. Deepak Publishing, Hampton, Virginia, pp. 85–99.Google Scholar
  30. MacDermott, A. J.: 1997, Distinguishing the Chiral Signature of Life in the Solar System and Beyond, ProcSPIE 3111, 272–279.Google Scholar
  31. Mason, S. F.: 1997, Extraterrestrial Handedness, Nature 389, 804.Google Scholar
  32. Meierhenrich, U., Thiemann, W. and Rosenbauer, H.: 1999, Molecular Parity Violation Via Comets? Chirality 11, 575–582.Google Scholar
  33. Meierhenrich, U. and Thiemann, W.: 1999, Neue Ansätze zur Erfassung extraterrestrischer Lebensformen, Nachrichten der Olbers-Gesellschaft Bremen 185, 4–7 [via world wide web:].Google Scholar
  34. Meierhenrich, U., Thiemann W., and Rosenbauer, H.: 2000, Pyrolytic Methylation Assisted Enantioseparation of Chiral Hydroxycarboxylic Acids, J. Anal. Appl. Pyrolysis, (submitted).Google Scholar
  35. Middleditch, B. S. and Desiderio, D. M.: 1972, Formation of Fatty Acid Methyl Esters During Gas Chromatography Using Trimethylanilinium Hydroxide, Anal. Lett. 5, 605–609.Google Scholar
  36. Minard, R. D., Hatcher, P. G., Gourley, R. C. and Matthews, C. N.: 1998, Structural Investigations of Hydrogen Cyanide Polymers: New Insights Using TMAH Thermochemolysis/GC-MS, Orig. Life Evol. Biosphere 28, 461–473.Google Scholar
  37. Nagata, Y., Masui, R. and Akino, T.: 1992a, The Presence of Free D-Serine, D-Alanine and D-Proline in Human Plasma. Experientia 48, 986–988. Birkhäuser Verlag, Basel.Google Scholar
  38. Nagata, Y., Yamamoto, K. and Shimojo, T.: 1992b, Determination of D-and L-Amino Acids in Mouse Kidney by High-Performance Liquid Chromatography, J. Chromatogr. Biomed. Appl. 575, 147–152.Google Scholar
  39. Nagata, Y., Horiike, K. and Maeda, T.: 1994, Distribution of Free D-Serine in Vertebrate Brains, Brain Res. 634, 291–295.Google Scholar
  40. Nagata, Y., Fujiwara, T., Kawaguchi-Nagata, K., Fukumori, Y. and Yamanaka, T.: 1998, Occurence of Peptidyl D-Amino Acids in Soluble Fractions of Several Eubacteria, Archaea and Eukaryotes, Biochim. Biophys. Acta 1379, 76–82.Google Scholar
  41. Oberbeck, V. R. and Aggarwal, H.: 1992, Comet Impacts and Chemical Evolution on the Bombarded Earth, Orig. Life Evol. Biosphere 21, 317–338.Google Scholar
  42. Oró, J.: 1961, Comets and the Formation of Biochemical Compounds on the Primitive Earth, Nature 190, 389–390.Google Scholar
  43. Oró J., Nakaparksin, S., Lichtenstein, H. and Gil-Av, E.: 1971, Configuration of Amino-Acids in Carbonaceous Chondrites and a Pre-Cambrian Chert, Nature 230, 107–108.Google Scholar
  44. Rein, D.: 1992, Die wunderbare Händigkeit der Moleküle: vom Ursprung des Lebens aus der Asymmetrie der Natur, Birkhäuser Verlag, Basel.Google Scholar
  45. Robb, E.W. and Westbrook, J. J.: 1963, Preparation of Methyl Esters for Gas Liquid Chromatography of Acids by Pyrolysis of Tetramethylammonium Salts, Anal. Chem. 35, 1644–1647.Google Scholar
  46. Rosenbauer, H., Fuselier, S. A., Ghielmetti, A., Greenberg, J. M., Goesmann, F., Ulamec, S., Israel, G., Livi, S., MacDermott, A. J., Matsuo, T., Pillinger, C. T., Raulin, F., Roll, R. and Thiemann, W.: 1998, The COSAC Experiment on the Lander of the ROSETTA Mission. COSPAR Annual Conference, Division F.3.3 Abstract 0008, Nagoya, Japan.Google Scholar
  47. Rubenstein, E., Bonner, W. A., Noyes ZH. P., and Brown, G. S.: 1983, Supernovae and Life, Nature 306, 118.Google Scholar
  48. Schulz, R.: 1999, Last News About Comet P/Wirtanen, Rosetta Lander Science Meeting 22–26 November, Schloß Ringberg, Rottach-Egern, Germany.Google Scholar
  49. Schwarze, J.W. and Gillmour, M. N.: 1969, Gas-Chromatographic Determination of C1 to C7 Monocarboxylic Acids and Lactic Acid by Pyrolysis of the Tetrabutyl Ammonium Salts, Anal. Chem. 41, 1686–1687.Google Scholar
  50. Szabó-Nagy, A. and Keszthelyi, L.: 1999, Parity Violating Energy Differences Between Enantiomers Confirmed by Crystallization Experiments, ISSOL'99 Conference 12–16 July, P2.7 p. 82, San Diego, USA.Google Scholar
  51. Thenot, J. P., Horning, E. C., Stafford, M. and Horning, M. G.: 1972, Fatty Acid Esterification with N,N-Dimethylformamide Dialkyl Acetals for GC Analysis, Anal. Lett. 5, 217–223.Google Scholar
  52. Thenot, J. P. and Horning, E. C.: 1972, Amino Acid N-Dimethylaminomethylene Alkyl Esters. New Derivatives for GC and GC-MS Studies, Anal. Lett. 5, 519–529.Google Scholar
  53. Thiemann, W. H.-P.: 1974, Disproportionation of Enantiomers by Precipitation, J. Mol. Evol. 4, 85–97.Google Scholar
  54. Thiemann, W. H.-P.: 2000, New Concepts on the Role of Physical Parameters Inducing Homochirality for the Evolution of Biospheres, in: 'The Role of Radiation in the Origin and Evolution of Life', 323–338, Kyoto University Press, Japan.Google Scholar
  55. Thiemann, W. H.-P.: 1998, Homochirality of the Evolution of Biospheres, Biol. Sci. in Space 12(2), 73–77.Google Scholar
  56. Tranter, G. E.: 1985, The Parity-Violating Energy Difference Between Enantiomeric Reactions, Chem. Phys. Lett. 115, 286–290.Google Scholar
  57. Ulamec, S., Block, J., Fenzi, M., Feuerbacher, B., Haerendel, G., Hemmerich, P., Maibaum, M., Rosenbauer, H., Schiewe, B., Schmidt, H. P., Schütze, R. and Wittmann, K.: 1997, RoLand: A Long-Term Lander for the ROSETTA Mission, Space Technol. 17, 59–64.Google Scholar
  58. Ulamec, S.: 1999, Rosetta Lander Status Overview, Rosetta Lander Science Meeting 22–26 November, Schloß Ringberg, Rottach-Egern, Germany.Google Scholar
  59. Yamagata, Y.: 1966, A Hypothesis for the Asymmetric Appearance of Biomolecules on Earth, J. Theoret. Biol. 11, 495–498.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  1. 1.Department of Physical ChemistryUniversity of BremenBremenGermany

Personalised recommendations