Annals of Global Analysis and Geometry

, Volume 18, Issue 3–4, pp 221–240 | Cite as

Spin Spaces, Lipschitz Groups, and Spinor Bundles

  • Thomas Friedrich
  • Andrzej Trautman


It is shown that every bundle Σ → M of complex spinormodules over the Clifford bundle Cl(g) of a Riemannian space(M, g) with local model (V, h)is associated with an lpin(‘Lipschitz’) structure on M, this being a reduction of theO(h)-bundle of all orthonormal frames on M to the Lipschitzgroup Lpin(h) of all automorphisms of a suitably defined spinspace. An explicit construction is given of the total space of theLpin(h)-bundle defining such a structure. If the dimension mof M is even, then the Lipschitz group coincides with the complexClifford group and the lpin structure can be reduced to a pin c structure. If m = 2n − 1, then a spinor module Σ on M is of the Cartan type: its fibres are 2 n -dimensional anddecomposable at every point of M, but the homomorphism of bundlesof algebras Cl(g) → End Σ globally decomposes if, andonly if, M is orientable. Examples of such bundles are given. Thetopological condition for the existence of an lpin structure on anodd-dimensional Riemannian manifold is derived and illustrated by theexample of a manifold admitting such a structure, but no pin c structure.

Clifford and spinor bundles pinc structures spin structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atiyah, M. F., Bott, R. and Shapiro, A.: Clifford modules, Topology 3, Suppl. 1 (1964), 3–38.Google Scholar
  2. 2.
    Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, Teubner, Leipzig, 1981.Google Scholar
  3. 3.
    Berline, N., Getzler, E. and Vergne, M.: Heat Kernels and Dirac Operators, Springer-Verlag, New York, 1992.Google Scholar
  4. 4.
    Cahen, M., Gutt, S. and Trautman, A.: Pin structures and the modified Dirac operator, J. Geom. Phys. 17(1995), 283–297.Google Scholar
  5. 5.
    Cartan, É.: Leçons sur la théorie des spineurs, Vols. 1 and 2, Exposés de Géométrie, Hermann, Paris, 1938.Google Scholar
  6. 6.
    Chevalley, C.: The Algebraic Theory of Spinors, Columbia Univ. Press, New York, 1954.Google Scholar
  7. 7.
    Fock, V.: Geometrisierung der Diracschen Theorie des Elektrons, Z. Phys. 57(1929), 261–277.Google Scholar
  8. 8.
    Friedrich, Th.: Die erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97(1980), 117–146.Google Scholar
  9. 9.
    Friedrich, Th.: Dirac-Operatoren in der Riemannschen Geometrie, Vieweg, Braunschweig, 1997.Google Scholar
  10. 10.
    Hirzebruch, F.: Topological Methods in Algebraic Geometry, 3rd edn, Springer-Verlag, New York, 1966.Google Scholar
  11. 11.
    Ivanenko, D. and Landau, L. D.: Zur Theorie des magnetischen Elektrons, Z. Physik 48(1928), 340–348.Google Scholar
  12. 12.
    Kähler, E.: Der innere und äussere Differentialkalkül, Abh. Akad. Wiss. Berlin(Math.-Phys.) 4(1960).Google Scholar
  13. 13.
    Karoubi, M.: Algèbres de Clifford et K-théorie, Ann. Sci. École Norm. Sup. 4ème sér. 1(1968), 161–270.Google Scholar
  14. 14.
    Karrer, G.: Einführung von Spinoren auf Riemannschen Mannigfaltigkeiten, Ann. Acad. Sci. Fenn. Ser. A, Math. 336(5) (1963), 1–16.Google Scholar
  15. 15.
    Karrer, G.: Darstellung von Cliffordbündeln, Ann. Acad. Sci. Fenn. Ser. A, Math. 521(1973), 1–34.Google Scholar
  16. 16.
    Kobayashi S. and Nomizu, K.: Foundations of Differential Geometry, Vols. I and II, Interscience, New York, 1963, 1969.Google Scholar
  17. 17.
    Lang, S.: Introduction to Differentiable Manifolds, Wiley, New York, 1962.Google Scholar
  18. 18.
    Lawson, H. B. and Michelsohn, M.-L.: Spin Geometry, Princeton Univ. Press, Princeton, NJ, 1989.Google Scholar
  19. 19.
    Milnor, J. W. and Stasheff, J. D.: Characteristic Classes, Ann. Math. Stud. 76, Princeton Univ. Press, Princeton, NJ, 1974.Google Scholar
  20. 20.
    Schrödinger, E.: Diracsches Elektron im Schwerefeld I, Sitzungsber. preuss. Akad. Wiss., phys. math. Kl. XI(1932), 105–128.Google Scholar
  21. 21.
    Steenrod, N.: The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, NJ, 1951.Google Scholar
  22. 22.
    Thomas, E.: On the cohomology of the real Grassmann complex and the characteristic classes of n-plane bundles, Trans. Amer. Math. Soc. 96(1960), 67–89.Google Scholar
  23. 23.
    Trautman, A.: Spinors and the Dirac operator on hypersurfaces. I. General theory, J. Math.Phys. 33(1992), 4011–4019.Google Scholar
  24. 24.
    Weil, A.: OEuvres scientifiques. Collected Papers, Vol. II (1951–1964), Springer-Verlag, New York, 1979, pp. 557–561; reprinted from Ann. of Math. 69(1959), 247–251.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Thomas Friedrich
    • 1
  • Andrzej Trautman
    • 2
  1. 1.Institut für Reine MathematikHumboldt UniversitätBerlinGermany
  2. 2.Instytut Fizyki TeoretycznejUniwersytet WarszawskiWarszawaPoland

Personalised recommendations