Skip to main content
Log in

Nonequilibrium Molecular Dynamics Studies of Heat Flow in One-Dimensional Systems

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A nonequilibrium molecular dynamics (NEMD) heat flow algorithm is used to compute the heat conductivity of one-dimensional (1D) lattices. For the well-known Fermi–Pasta–Ulam (FPU) lattice, it is shown that for heat field strengths higher than a certain critical value, a stable solitary wave (soliton) can emerge spontaneously in molecular dynamics simulations. For lower field strengths the dynamics of the system are mostly chaotic; heat conductivity obtained via the NEMD algorithm increases monotonically with the size of the system. It is also demonstrated that the 1D nonequilibrium system may reach different steady states depending on the initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Z. Rieder, J. L. Lebowitz, J. Math. Phys. 8:1073 (1967).

    Google Scholar 

  2. H. Matsuda and K. Ishii, Prog. Theor. Phys. Suppl. 45:56 (1970).

    Google Scholar 

  3. J. B. Keller, G. C. Papanicolaou, and J. Weilenmann, Commun. Pure Appl. Math. 32:583 (1978).

    Google Scholar 

  4. R.E. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1955).

    Google Scholar 

  5. F. Mokross and H. Buttner, J. Phys. C 16:4539 (1983).

    Google Scholar 

  6. G. Casati, J. Ford, F. Vivaldi, and W. M. Visscher, Phys. Rev. Lett. 52:1861 (1984).

    Google Scholar 

  7. M. Mareschal and A. Amellal, Phys. Rev. A 37:2189 (1988).

    Google Scholar 

  8. E. A. Jackson and A. D. Mistriotis, J. Phys. Condens. Matter 1:1223 (1989).

    Google Scholar 

  9. H. Kaburaki and M. Machida, Phys. Lett. A 181:85 (1993).

    Google Scholar 

  10. A. Maeda and T. Munakata, Phys. Rev. E 52, 234 (1995).

    Google Scholar 

  11. D. J. Mimnagh and L. E. Ballentine, Phys. Rev. E 56:5332 (1997).

    Google Scholar 

  12. S. Lepri, R. Livi, and A. Politi, Phys. Rev. Lett. 78:1896 (1997); Physica D 119:140 (1998).

    Google Scholar 

  13. S. Lepri, R. Livi, and A. Politi, Europhys. Lett. 43:271 (1998).

    Google Scholar 

  14. B. Hu, and B. Li, and H. Zhao, Phys. Rev. E, 57:2992 (1998).

    Google Scholar 

  15. A. Fillipov, B. Hu, B.W. Li, and A. Zeltser, J. Phys. A Math. Gen. 31:7719 (1998).

    Google Scholar 

  16. H. A. Posch, Wm. G. Hoover, Phys. Rev. E 58:4344 (1998).

    Google Scholar 

  17. T. Hatano, Phys. Rev. E 59:R1 (1999).

    Google Scholar 

  18. F. Zhang, D. J. Isbister, and D. J. Evans, Phys. Rev. E 61:3541 (2000).

    Google Scholar 

  19. F. Zhang, D. J. Isbister, and D. J. Evans, submitted for publication.

  20. D. J. Evans, Phys. Lett. A 91:457 (1982).

    Google Scholar 

  21. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, New York, 1990).

    Google Scholar 

  22. D. J. Evans and H. J. M. Hanley, Mol. Phys. 68:97 (1989); D. P. Hansen and D. J. Evans, Mol. Phys. 81:767 (1994); D. P. Hansen and D. J. Evans, Mol. Sim. 14:409 (1995).

    Google Scholar 

  23. M. Toda, Theory of Nonlinear Lattices (Springer-Verlag, Berlin, 1981).

    Google Scholar 

  24. J. A. D. Wattis, J. Phys. A Math. Gen 26:1193 (1993).

    Google Scholar 

  25. F. Zhang, J. Chem. Phys. 106:6102 (1997).

    Google Scholar 

  26. S. Sarman, D. J. Evans, and P. T. Cummings, Phys. Rep. 305:1 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Isbister, D.J. & Evans, D.J. Nonequilibrium Molecular Dynamics Studies of Heat Flow in One-Dimensional Systems. International Journal of Thermophysics 22, 135–147 (2001). https://doi.org/10.1023/A:1006711820344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006711820344

Navigation