Skip to main content
Log in

Some Physico-Technical Aspects of the New Generation of Self-Calibrated Alanine/EPR Dosimeter and Results from the International Intercomparison trial

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Some physico-technical parameters of the self-calibrated alanine/EPR dosimeters are described. Principally, this new type of solid state/EPR dosimeter contains radiation sensitive diamagnetic material (in the present case, alanine), some quantity of EPR active, but radiation insensitive, substance (for example, Mn2+/MgO) playing roles of an internal standard and a binding material. Thus with this dosimeter the EPR spectra of alanine and the internal standard Mn2+ are recorded simultaneously and the dose response is represented as a ratio of EPR signal intensities of alanine versus Mn2+ as a function of absorbed dose. As a result, the data of the present study have shown that there is practically no interference of the dosimeter EPR response (expressed as the ratio I alanine/I Mn) from the way of preparation (homogeneity), behavior after irradiation (fading of EPR signals with time, influence of different meteorological conditions) as well as specific spectrometer setting conditions. These dosimeters show satisfactory reproducibility of preparation and reading as well as stability on keeping. Thus, fulfilling the described physico-technical data of this type of dosimeters, the reproducibility of the readings is significantly improved particularly when intercomparison among different laboratories is performed. This conclusion is confirmed by independent studies of the described self-calibrated alanine/EPR dosimeters in several laboratories in Europe. Results of which are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Bradshaw, D. G. Cadena, G. W. Crawford, H. A. W. Spetzler, Radiat. Res., 17 (1962) 11.

    Google Scholar 

  2. F. Bermann, H. De Choudence, S. Descours, in: Proc. Symp. on Advances in Physical and Biological Radiation Detectors Vienna, 1970, STI/PUB/1269, IAEA, Vienna, 1971, p. 311.

    Google Scholar 

  3. D. F. Regulla, U. Deffner, Intern. J. Appl. Radiation Isotopes, 33 (1982) 1101.

    Google Scholar 

  4. A. Bartolotta, F. L. Indovina, S. Onori, A. Rosati, Radiat. Prot. Dosim., 9 (1984) 277.

    Google Scholar 

  5. J. W. Hansen, K. J. Olsen, M. Wille, Radiat. Prot. Dosim., 19 (1987) 43.

    Google Scholar 

  6. T. Kojima, R. Tanaka, Y. Morita, T. Seguchi, Appl. Radiation Isotopes, 37 (1986) 517.

    Google Scholar 

  7. W. L. McLaughlin, Radiat. Prot. Dosim., 47 (1993) 255.

    Google Scholar 

  8. T. Kojima, Y. Haruyama, H. Tachibana, R. Tanaka, Appl. Radiation Isotopes, 43 (1992) 863.

    Google Scholar 

  9. F. Cononckx, H. Schonbacher, Appl. Radiation Isotopes, 44 (1993) 67.

    Google Scholar 

  10. E. H. Hasskell, R. B. Hayes, G. H. Kenner, Radiat. Prot. Dosim., 77 (1998) 43.

    Google Scholar 

  11. N. D. Yordanov, Appl. Magn. Res., 6 (1994) 241.

    Google Scholar 

  12. N. D. Yordanov, B. Genova, Anal. Chim. Acta, 353 (1997) 99.

    Google Scholar 

  13. N. D. Yordanov, V. Gancheva, Patent 344/99.

  14. N. D. Yordanov, V. Gancheva, J. Radioanal. Nucl. Chem., 240 (1999) 215.

    Google Scholar 

  15. N. D. Yordanov, V. Gancheva, in: Proc. Symp. on Techniques for High Dose Dosimetry in Industry, Agriculture and Medicine, IAEA-TECDOC-1070, March 1999, p. 37.

  16. N. D. Yordanov, V. Gancheva, V. Pelova, J. Radioanal. Nucl. Chem., 240 (1999) 619.

    Google Scholar 

  17. J. A. Weil, J. R. Bolton, J. E. Wertz, in: Electron Paramagnetic Resonance: Elementary Theory and Practical Application, Wiley Intersci., New York, 1994.

    Google Scholar 

  18. N. D. Yordanov, P. Slavov, Appl. Mag. Res., 10 (1996) 351.

    Google Scholar 

  19. V. Yu. Nagy, M. Desrosiers, Appl. Radiation Isotopes, 47 (1996) 789.

    Google Scholar 

  20. B. Cieselski, L. Wielopolski, Radiat. Res., 140 (1994) 105.

    Google Scholar 

  21. L. Wielopolski, M. Maryanski, B. Cieselski, A. Farman, L. E. Reinstein, A. G. Meek, Med. Phys., 14 (1987) 646.

    Google Scholar 

  22. F. Callens, K. Van Leare, W. Mondelaas, P. Matthys, E. Boesman, Appl. Radiation Isotopes, 47 (1996) 1241.

    Google Scholar 

  23. E. Sagstuen, E. O. Hole, S. R. Hamgedal, W. H. Nelson, J. Phys. Chem., A101 (1997) 9763.

    Google Scholar 

  24. P. H. Sharpe, K. Rajendan, J. P. Sephton, Appl. Radiation Isotopes, 47 (1996) 1171.

    Google Scholar 

  25. E. H. Haskell, R. B. Hayer, G. H. Kenner, Radiat. Meas., 27 (1997) 325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yordanov, N.D., Gancheva, V. Some Physico-Technical Aspects of the New Generation of Self-Calibrated Alanine/EPR Dosimeter and Results from the International Intercomparison trial. Journal of Radioanalytical and Nuclear Chemistry 245, 323–328 (2000). https://doi.org/10.1023/A:1006710421488

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006710421488

Keywords

Navigation