Skip to main content
Log in

Large-Time Spatial Covariance of Concentration of Conservative Solute and Application to the Cape Cod Tracer Test

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Most studies on conservative transport in stationary velocity fields have focused on the description of the concentration mean. In this work, we use a Lagrangian methodology to develop an analytical expression for the spatial covariance of the concentration, based on the central limit theorem and applicable to large times after injection. We use this expression to analyze the conservative tracer test data from the natural gradient experiment conducted at Cape Cod in 1985–1988, in which bromide was quickly injected into the aquifer and the concentration was measured at many locations at certain points in time. The parameters that determine the concentration mean had been estimated in previous studies. Here, the two-particle covariance matrix, needed to describe the concentration covariance function, is derived from the measurements through a maximum likelihood method. Then, the data are interpolated on a grid using simple kriging, and contour maps of the concentration estimates are plotted. The results of cross-validation indicate that the model is consistent with the field measurements and the kriging estimates appear realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor, K.: 1952, Diffusion in a field of homogeneous turbulence, 2. The relative motion of particles, Proc. Cambridge Philos. Soc. 48, 345-362.

    Google Scholar 

  • Bear, J.: 1972, Dynamics of Fluids in Porous Media, Elsevier, New York, pp. 764.

    Google Scholar 

  • Bellin, A., Salandin, P. and Rinaldo, A.: 1992, Simulation of dispersion in heterogeneous formations: Statistics, first-order theories, convergence of computations, Water Resour. Res. 28(9), 2211-2227.

    Google Scholar 

  • Benjamin, J. R., and Cornell, C. A.: 1970, Probability, Statistics, and Decision for Civil Engineers, MacGraw-Hill, NY, pp. 684.

    Google Scholar 

  • Berkowitz, B. and Scher, H.: 1998, Theory of anomalous chemical transport in random fracture networks, Physical Rev. E 57(5), 5858-5869.

    Google Scholar 

  • Bhattacharya, R.: 1985, A central limit theorem for diffusions with periodic coefficients, The Annals of Probab. 13(2), 385-396.

    Google Scholar 

  • Bhattacharya, R. N., Gupta, V. K. and Walkers, H. F.: 1989, Asymptotics of solute dispersion in periodic porous media, Siam J. Appl. Math. 49(1), 86-98.

    Google Scholar 

  • Dagan, G.: 1982, Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2. The solute transport, Water Resour. Res. 18(4), 835-848.

    Google Scholar 

  • Dagan, G.: 1984, Solute transport in heterogeneous porous formations, J. Fluid Mech. 145, 151-177.

    Google Scholar 

  • Dagan, G.: 1989, Flow and Transport in Porous Formations, Springer-Verlag, New York, pp. 465.

    Google Scholar 

  • Dagan, G. and Fiori, A.: 1997, The influence of pore-scale dispersion on concentration statistical moments in transport through heterogeneous aquifers, Water Resour. Res. 33(7), 1595-1605.

    Google Scholar 

  • Fiori, A. and Dagan, G.: 1999, Concentration fluctuations in transport by groundwater: Comparison between theory and field experiments, Water Resour. Res. 35(1), 105-112.

    Google Scholar 

  • Fisher, H. B., List, E. J., Koh, R. C. Y., Imberger, J. and Brooks, N. H.: 1979, Mixing in Inland and Coastal Waters, Academic Press, NY, pp. 483.

    Google Scholar 

  • Garabedian, S. P., LeBlanc, D. R., Gelhar, L.W. and Celia, M. A.: 1991, Large-scale natural gradient test in sand and gravel, Cape Cod, Massachusetts, 2: Analysis of spatial moments for nonreactive tracer, Water Resour. Res. 27(5), 911-924.

    Google Scholar 

  • Gelhar, L. W. and Axness, C. L.: 1983, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resour. Res. 19(1), 161-180.

    Google Scholar 

  • Graham, W. D. and McLaughlin, D.: 1989, Stochastic analysis of nonstationary subsurface solute transport: 1. Unconditional moments, Water Resour. Res. 25(2), 215-232.

    Google Scholar 

  • Kabala, Z. J.: 1997, Analytical solutions for the coefficient of variation of the volume-averaged solute concentration in heterogeneous aquifers, Stoch. Hydrol. Hydraul. 11(4), 331-348.

    Google Scholar 

  • Kapoor, V. and Gelhar, L. W.: 1994a, Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations, Water Resour. Res. 30(6), 1775-1788.

    Google Scholar 

  • Kapoor, V. and Gelhar, L. W.: 1994b, Transport in three-dimensionally heterogeneous aquifers: 2. Predictions and observations of concentration fluctuations, Water Resour. Res. 30(6), 1789-1801.

    Google Scholar 

  • Kapoor, V. and Kitanidis, P. K.: 1996, Concentration fluctuations and dilution in two-dimensionally periodic heterogeneous porous media, Transport in Porous Media 21(1), 91-119.

    Google Scholar 

  • Kapoor, V. and Kitanidis, P. K.: 1997, Advection-diffusion in spatially random flows: formulation for the concentration covariance, Stoch. Hydrol. Hydraul. 11(5), 397-422.

    Google Scholar 

  • Kapoor, V. and Kitanidis, P. K.: 1998, Concentration fluctuations and dilution in aquifer, Water Resour. Res. 34(5), 1181-1193.

    Google Scholar 

  • Kitanidis, P. K. and Lane, R. W.: 1985, Maximum likelihood parameter estimation of hydrologic spatial processes by Gauss-Newton method, J. Hydrol. 79, 53-71.

    Google Scholar 

  • Kitanidis, P. K.: 1991, Orthonormal residuals in geostatistics: model criticism and parameter estimation, Math. Geol. 23(5), 741-758.

    Google Scholar 

  • Kitanidis, P. K.: 1994, The concept of the dilution index, Water Resour. Res. 30(7), 2011-2026.

    Google Scholar 

  • Kitanidis, P. K.: 1997, Introduction to Geostatistics, Cambridge University Press, pp. 249.

  • LeBlanc, D. R., Garabedian, S. P., Hess, K. M., Gelhar, L. W., Quadri, R. D., Stollenwerk, K. G. and Wood, W. W.: 1991, Large-scale natural gradient test in sand and gravel, Cape Cod, Massachusetts, 1: Experimental design and observed movement, Water Resour. Res. 27(5), 895-910.

    Google Scholar 

  • Neuman, S. P., Winter, C. L. and Newman, C. M.: 1987, Stochastic theory of field-scale Fickian dispersion in anisotropic porous media, Water Resour. Res. 23(3), 453-466.

    Google Scholar 

  • Neuman, S. P. and Zhang, Y. K.: 1990, A quasi-linear theory of non-Fickian and Fickian subsurface dispersion, 1. Theoretical analysis with application to isotropic media, Water Resour. Res. 26(5), 887-902.

    Google Scholar 

  • Neuman, S. P.: 1993, Eulerian-Lagrangian theory of transport in space-time nonstationary velocity fields: Exact nonlocal formalism by conditional moments and weak approximations, Water Resour. Res. 29(3), 633-645.

    Google Scholar 

  • Pannone, M. and Kitanidis, P. K.: 1999, Large time behavior of concentration variance and dilution in heterogeneous formations, Water Resour. Res. 35(3), 623-634.

    Google Scholar 

  • Parzen, E.: 1960, Modern Probability Theory and Its Applications, Wiley, NY, pp. 464.

    Google Scholar 

  • Richardson, L. F.: 1926, Atmospheric diffusion shown on a distance-neighbour graph, Proc. R. Soc. London, Ser. A 110, 709.

    Google Scholar 

  • Rajaram, H. and Gelhar, L. W.: 1993, Plume scale-dependent dispersion in heterogeneous aquifers 2., Eulerian analysis and three-dimensional aquifers, Water Resour. Res. 29(9), 3249-3260.

    Google Scholar 

  • Rubin, Y.: 1990, Stochastic modeling of macrodispersion in heterogeneous porous media, Water Resour. Res. 26(1), 133-141.

    Google Scholar 

  • Rubin, Y.: 1991, Transport in heterogeneous porous media: prediction and uncertainty, Water Resour. Res. 27(7), 1723-1738.

    Google Scholar 

  • Thierrin, J. and Kitanidis, P. K.: 1994, Solute dilution at the Borden and Cape Cod groundwater tracer tests, Water Resour. Res. 30(11), 2883-2890.

    Google Scholar 

  • Vomvoris, E. G. and Gelhar, L. W.: 1990, Stochastic analysis of the concentration variability in a three-dimensional heterogeneous aquifer, Water Resour. Res. 26(10), 2591-2602.

    Google Scholar 

  • Zhang, Y. K. and Neuman, S. P.: 1990, A quasi-linear theory of non-Fickian and Fickian subsurface dispersion, 2. Application to anisotropic media at the Borden site, Water Resour. Res. 26(5), 903-913.

    Google Scholar 

  • Zhang, Q.: 1995, Transient behavior of mixing induced by a random velocity field, Water Resour. Res. 31(3), 577-591.

    Google Scholar 

  • Zhang, D.: 1995, Impacts of dispersion and first-order decay on solute transport in randomly heterogeneous porous media, Transport in Porous Media 21, 123-144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pannone, M., Kitanidis, P.K. Large-Time Spatial Covariance of Concentration of Conservative Solute and Application to the Cape Cod Tracer Test. Transport in Porous Media 42, 109–132 (2001). https://doi.org/10.1023/A:1006704215335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006704215335

Navigation