Electrolysis of Nitric Acid by Using a Glassy Carbon Fiber Column Electrode System

Abstract

The electrochemical redox behavior of nitric acid was studied using a glassy carbon fiber column electrode system, and its reaction mechanism was suggested and confirmed in several ways. Electrochemical reactions in less than 2.0M nitric acid was not observed. However, in more than 2.0M nitric acid, the reduction of nitric acid to nitrous acid occurred and the reduction rate was slow so that the nitric acid solution had to be in contact with an electrode for a period of time long enough for an apparent reduction current of nitric acid to nitrous acid to be observed. The nitrous acid generated in more than 2.0M nitric acid was rapidly and easily reduced to nitric oxide by an autocatalytic reaction. Sulfamic acid was confirmed to be effective to destroy the nitrous acid. At least 0.05M sulfamic acid was necessary to scavenge the nitrous acid generated in 3.5M nitric acid.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    NEA Nuclear Science Committee, Actinide Separation Chemistry in Nuclear Waste Streams and Materials, OECD/NEA Report NEA/NSC/DOC(97)19, 1997.

  2. 2.

    OECD Final Report: Status and Assessment Report on Actinide and Fission Product Partitioning and Transmutation, NEA/PTS/DOC(98)4, 1998.

  3. 3.

    D. Lelievre, H. Boussier, J. P. Grouiller, R. P. Bush, Perspectives and Cost of Partitioning and Transmutation of Long-lived Radionuclides, EUR-17485, 1996.

  4. 4.

    Y. Morita, M. Kubota, Recovery of Neptunium, JAERI-M-84043, 1984.

  5. 5.

    V. A. Drake, Nucl. Energy, 26 (1987) 253.

    Google Scholar 

  6. 6.

    W. W. Schulz, L. L. Burger, J. D. Navratil, K. P. Bender, Science and Technology of Tributyl Phosphate, Vol. III, CRC Press Inc., 1964.

  7. 7.

    K. J. Z. Vetter, Phys. Chem., 194 (1960) 199.

    Google Scholar 

  8. 8.

    A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker Inc., New York, 1985, p. 127.

    Google Scholar 

  9. 9.

    K. W. Kim, E. H. Lee, J. H. Yoo, Separ. Sci. Tech., 43 (1999) No. 13.

  10. 10.

    S. Kihara, Z. Yoshida, H. Aoyagi, Bunscki Kagaku, 40 (1991) 309.

    Google Scholar 

  11. 11.

    K. W. Kim, K. H. Byeon, E. H. Lee, J. H. Yoo, H. S. Park, J. Korean Ind. Eng. Chem., 7 (1996) No. 4, 743.

    Google Scholar 

  12. 12.

    K. W. Kim, E. H. Lee, J. H. Yoo, H. S. Park, U.S. Patent 5,904,849, 1999.

  13. 13.

    K. W. Kim, K. H. Byeon, E. H. Lee, J. H. Yoo, H. S. Park, J. Korean Ind. Eng. Chem., 8 (1997) No. 3, 416.

    Google Scholar 

  14. 14.

    B. E. Saltzman, Anal. Chem., 26 (1954) No. 12, 1949.

    Google Scholar 

  15. 15.

    D. K. Gosser, Jr., Cyclic Voltammetry, VCH Publisher, 1993.

  16. 16.

    J. A. Epstein, I. Levin, S. Raviv, Proc. 3rd United Nations International Conf. on the Peaceful Uses of Atomic Energy, Vol. 8, 1964 (Paper No. 818), p. 436.

    Google Scholar 

  17. 17.

    K. J. Z. Vetter, Phys. Chem., 194 (1960) 199.

    Google Scholar 

  18. 18.

    A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker Inc., New York, 1985, p. 127.

    Google Scholar 

  19. 19.

    G. Schmid, Z. Electrochem., 64 (1964) No. 7, 677.

    Google Scholar 

  20. 20.

    G. H. Thompson, M. C. Thompson, U.S. Report DP-1452, 1977.

  21. 21.

    A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker Inc., New York, 1985, p. 127.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, KW., Lee, EH., Choi, IK. et al. Electrolysis of Nitric Acid by Using a Glassy Carbon Fiber Column Electrode System. Journal of Radioanalytical and Nuclear Chemistry 245, 301–308 (2000). https://doi.org/10.1023/A:1006702203741

Download citation

Keywords

  • Oxide
  • Physical Chemistry
  • Nitric Oxide
  • Inorganic Chemistry
  • Nitric Acid