Skip to main content

Convex Hulls in Singular Spaces of Negative Curvature

Abstract

The paper gives a simple example of a complete CAT(−1)-space containing a set S with the following property: the boundary at infinity ∂CH(S)of the convex hull of S differs from S by an isolated point. In contrast to this it is shown that if S is a union of finitely many convex subsets of a complete CAT(−1)-space X, then ∂CH(S) = ∂ S. Moreover, this identity holds without restrictions on S if CH is replaced by some notion of ‘almost convex hull’.

This is a preview of subscription content, access via your institution.

References

  1. Ancona, A.: Convexity at infinity and Brownian motion on manifolds with unbounded negative curvature, Rev. Mat. Iberoamericana 10(1) (1994), 189–220.

    Google Scholar 

  2. Anderson, M. T.: The Dirichlet problem at infinity for manifolds of negative curvature, J. Differential Geom. 18 (1983), 701–721.

    Google Scholar 

  3. Ballmann,W.: Lectures on Spaces of Nonpositive Curvature, DMV Sem. 25, Birkhäuser, Basel, 1995.

    Google Scholar 

  4. Ballmann,W., Gromov, M. and Schroeder, V.: Manifolds of Nonpositive Curvature, Birkhäuser, Basel, 1985.

    Google Scholar 

  5. Bangert, V. and Lang, U.: Trapping quasiminimizing submanifolds in spaces of negative curvature, Comment. Math. Helv. 71 (1996), 122–143.

    Google Scholar 

  6. Borbély, A.: A note on the Dirichlet problem at infinity for manifolds of negative curvature, Proc. Amer. Math. Soc. 114 (1992), 865–872.

    Google Scholar 

  7. Borbély, A.: Construction of convex sets in negatively curved manifolds, Proc. Amer. Math. Soc. 118 (1993), 205–210.

    Google Scholar 

  8. Borbély, A.: On the smoothness of the convex hull in negatively curved manifolds, J. Geom. 54(1995), 3–14.

    Google Scholar 

  9. Borbély, A.: Convexity at infinity and bounded harmonic functions, Bull. Austral. Math. Soc. 56 (1997), 63–68.

    Google Scholar 

  10. Borbély, A.: Some results on the convex hull of finitely many convex sets, Proc. Amer. Math. Soc. 126 (1998), 1515–1525.

    Google Scholar 

  11. Borbély, A.: The nonsolvability of the Dirichlet problem on negatively curved manifolds, Differential Geom. Appl. 8 (1998), 217–237.

    Google Scholar 

  12. Bowditch, B. H.: Notes on Gromov's hyperbolicity criterion for path-metric spaces, in É. Ghys, A. Haefliger and A. Verjovsky (eds), Group Theory from a Geometrical Viewpoint, World Scientific, Singapore, 1991, pp. 64–167.

    Google Scholar 

  13. Bowditch, B. H.: Some results on the geometry of convex hulls in manifolds of pinched negative curvature, Comment. Math. Helv. 69 (1994), 49–81.

    Google Scholar 

  14. Bridson, M. and Haefliger, A.: Metric Spaces of Non-Positive Curvature, in preparation.

  15. Burago, Yu., Gromov, M. and Perel'man, G.: A.D. Alexandrov spaces with curvature bounded below, Russian Math. Surveys 47(2) (1992), 1–58.

    Google Scholar 

  16. Choi, H. I.: Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds, Trans. Amer. Math. Soc. 281 (1984), 691–716.

    Google Scholar 

  17. Eberlein, P. and O'Neill, B.: Visibility manifolds, Pacific J. Math. 46 (1973), 45–109.

    Google Scholar 

  18. Gromov, M.: Foliated Plateau problem, Part 1: Minimal varieties, Geom. Funct. Anal. 1 (1991), 14–79.

    Google Scholar 

  19. Gromov, M.: Hyperbolic groups, in S. M. Gersten (ed.), Essays in Group Theory, MSRI Publications 8, Springer-Verlag, New York, 1987, pp. 75–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hummel, C., Lang, U. & Schroeder, V. Convex Hulls in Singular Spaces of Negative Curvature. Annals of Global Analysis and Geometry 18, 191–204 (2000). https://doi.org/10.1023/A:1006698910715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006698910715