Skip to main content
Log in

A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The design of remediation strategies for nonaqueous phase liquid (NAPL) contaminants involves predicting the rate of NAPL dissolution. A physically based model of an idealized pore geometry was developed to predict nonaqueous phase liquid dissolution rate coefficients. A bundle of parallel pores in series model is used to represent NAPL dissolution as a function of three processes: pore diffusion, corner diffusion, and mixing and multiple contact. The dissolution rate coefficient is expressed in terms of the modified Sherwood number (Sh′) and is a function of Peclet (Pe) number. The model captures the complex behavior of Sh′ versus Pe data for both water-wet (Powers, 1992) and NAPL-wet (Parker et al., 1991) media. For water-wet media, the observed behavior can be broken down into four distinct regions. Each region represents a different physical process controlling NAPL dissolution: the low-Pe region is controlled by pore diffusion; the low- to moderate-Pe region is a transition zone; the moderate-Pe region is controlled by mixing and multiple contact; and the high-Pe region is controlled by corner diffusion. For the high-Pe conditions typical of most column experiments, the model involves only one fitting parameter. For NAPL-wet media, NAPL dissolution is governed exclusively by corner diffusion, and the model again involves only one fitting parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. R., Johnson, R. L. and Pankow, J. F.: 1992a, Dissolution of dense chlorinated solvents into ground water, I, Dissolution from a well-defined residual source, Ground Water 30(2), 250–256.

    Google Scholar 

  • Anderson, M. R., Johnson, R. L. and Pankow, J. F.: 1992b, Dissolution of dense chlorinated solvents into ground water, III, Modeling contaminant plumes from fingers and pools of solvent, Environ. Sci. Tech. 26(5), 901–908.

    Google Scholar 

  • Borden, R. C. and Kao, C. M.: 1992, Evaluation of groundwater extraction for remediation of petroleum contaminated groundwater, Water Environ. Res. 64(1), 28–36.

    Google Scholar 

  • Bowman, C.W., Ward, D. M., Johnson, A. I. and Trass, O.: 1961, Mass transfer from fluid and solid spheres at low Reynolds numbers, Can. J. Chem. Engng 39(1), 9–13.

    Google Scholar 

  • Bradford, S., Abriola, L. M. and Vendlinski, R. A.: 1996, Entrapment and dissolution of tetrachloroethylene in fractional wettability porous media, EOS Trans. AGU 77(46), 274.

    Google Scholar 

  • Brusseau, M. L.: 1992, Rate-limited mass transfer and transport of organic solutes in porous media that contain immobile immiscible organic liquid, Water Resour. Res. 28(1), 33–45.

    Google Scholar 

  • Carslaw, H. W. and Jaeger, J. C.: 1959, Conduction of Heat in Solids, 2nd edn, Clarendon Press, Oxford.

    Google Scholar 

  • Chrysikopoulos, C. V.: 1995, Three-dimensional analytical models of contaminant transport from nonaqueous phase liquid pool dissolution in saturated subsurface formations, Water Resour. Res. 31(4), 1137–1145.

    Google Scholar 

  • Chrysikopoulos, C. V. and Lee, K. Y.: 1998, Contaminant transport resulting from multicomponent nonaqueous phase liquid pool dissolution in three-dimensional subsurface formations, J. Contam. Hydrol. 31(1–2), 1–21.

    Google Scholar 

  • Chrysikopoulos, C. V., Voudrias, E. A. and Fyrillas, M. M.: 1994, Modeling of contaminant transport resulting from dissolution of nonaqueous phase liquid pools in saturated porous media, Transport in Porous Media 16(2), 125–145.

    Google Scholar 

  • Dullien, F. A. L.: 1992, Porous Media: Fluid Transport and Pore Structure, Academic Press, San Diego, CA.

    Google Scholar 

  • Friedlander, S. K.: 1957, Mass and heat transfer to single spheres and cylinders at low Reynolds numbers, Aiche J. 3(1), 43–48.

    Google Scholar 

  • Geller, J. T. and Hunt, J. R.: 1993, Mass transfer from nonaqueous phase organic liquids in watersaturated porous media, Water Resour. Res. 29(4), 833–845.

    Google Scholar 

  • Guarnaccia, J. F., Imhoff, P. T., Missildine, B. C., Oostrom, M., Celia, M. A., Dane, J. H., Jaffe, P. R. and Pinder, G. F.: 1992, Multiphase chemical transport in porous media, Rep. EPA/600/S-92/002, U.S. Environ. Protect. Agency, Kerr Environ. Res. Lab., Ada, OK.

    Google Scholar 

  • Holman, H.-Y. N. and Javandel, I.: 1996, Evaluation of transient dissolution of slightly water-soluble compounds from a light nonaqueous phase liquid pool, Water Resour. Res. 32(4), 915–923.

    Google Scholar 

  • Hunt J R., Sitar, N. and Udell, K. S.: 1988a, Nonaqueous phase liquid transport and cleanup, 1, Analysis of mechanisms, Water Resour. Res. 24(8), 1247–1258.

    Google Scholar 

  • Hunt J R., Sitar, N. and Udell, K. S.: 1988b, Nonaqueous phase liquid transport and cleanup, 2, Experimental studies, Water Resour. Res. 24(8), 1259–1269.

    Google Scholar 

  • Imhoff, P. T., Jaffe, P. R. and Pinder, G. F.: 1994, An experimental study of complete dissolution of a nonaqueous phase liquid in saturated porous media, Water Resour. Res. 30(2), 307–320.

    Google Scholar 

  • Johnson, R. L. and Pankow, J. F.: 1992, Dissolution of dense chlorinated solvents into groundwater, 2, Source functions for pools of solvent, Environ. Sci. Technol. 26(5), 896–901.

    Google Scholar 

  • Kennedy, C. A. and Lennox, W. C.: 1997, A pore-scale investigation of mass transport from dissolving DNAPL droplets, J. Contam. Hydrol. 24, 221–246.

    Google Scholar 

  • Kim, T.-J. and Chrysikopoulos, C. V.: 1999, Mass transfer correlations for nonaqueous phase liquid pool dissolution in saturated porous media, Water Resour. Res. 35(2), 449–459.

    Google Scholar 

  • Lake, L. W.: 1989, Enhanced Oil Recovery, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Lee, K. Y. and Chrysikopoulos, C. V.: 1998, NAPL pool dissolution in stratified and anisotropic porous formations, J. Environ. Engng (ASCE) 124(9), 851–862.

    Google Scholar 

  • Mackay, D., Shiu, W. Y., Maijaneu, A. and Feenstra, S.: 1991, Dissolution of non-aqueous phase liquids in groundwater, J. Contam. Hydrol. 8, 23–42.

    Google Scholar 

  • Mayer, A. S. and Miller, C. T.: 1992, The influence of porous medium characteristics and measurement scale on pore-scale distributions of residual nonaqueous-phase liquids, J. Contam. Hydrol. 11, 189–213.

    Google Scholar 

  • Mayer, A. S. and Miller, C. T.: 1993, An experimental investigation of pore-scale distributions of nonaqueous phase liquids at residual saturation, Transport in Porous Media 10, 57–80.

    Google Scholar 

  • Mayer, A. S. and Miller, C. T.: 1996, The influence of mass transfer characteristics and porous media heterogeneity on nonaqueous phase dissolution, Water Resour. Res. 32(6), 1551–1567.

    Google Scholar 

  • Mercer, J. W. and Cohen, R. M.: 1990, A review of immiscible fluids in the subsurface: Properties, models, characterization, and remediation, J. Contam. Hydrol. 6, 107–163.

    Google Scholar 

  • Miller, C. T., Poirier-McNeill, M. M. and Mayer, A. S.: 1990, Dissolution of trapped nonaqueous phase liquids: mass transfer characteristics, Water Resour. Res. 26(11), 2783–2796.

    Google Scholar 

  • Parker, J. C., Katyal, A. K., Kaluarachchi, J. J., Lenhard, R. J., Johnson, T. J., Jayaraman, K., Unlu, K. and Zhu, J. L.: (1991) Modeling multiphase organic chemical transport in soils and ground water, Rep. EPA/600/2-91/042, U.S. Environ. Protect. Agency, Washington, D.C.

    Google Scholar 

  • Pennell, K. D., Abriola, L. M. and Weber, W. W.: 1993, Surfactant-enhanced solubilization of residual dodecane in soil columns, II, Mathematical modeling, Environ. Sci. Tech. 27, 2332–2340.

    Google Scholar 

  • Pfannkuch, H.: 1984, Determination of the contaminant source strength frommass exhange processes at the petroleum-ground-water interface in shallow aquifer systems, In Proceedings NWWA/API Conf. of Petrol. Hydrocarbons and Organic Chemicals in Groundwater, Houston, pp. 111–129.

  • Powers, S. E.: 1992, Dissolution of nonaqueous phase liquids in saturated subsurface systems, PhD Dissertation, The University of Michigan, Ann Arbor, MI.

    Google Scholar 

  • Powers, S. E., Abriola, L. M., Dunkin, J. S. and Weber, W. J.: 1994a, Phenomenological models for transient NAPL-water mass-transfer processes, J. Contam. Hydrol. 16, 1–33.

    Google Scholar 

  • Powers, S. E., Abriola, L. M. and Weber, W. J.: 1992, An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates, Water Resour. Res. 28(10), 2691–2705.

    Google Scholar 

  • Powers, S. E., Abriola, L. M. and Weber, W. J.: 1994b, An experimental investigation of NAPL dissolution in saturated subsurface systems: Transient mass transfer rates, Water Resour. Res. 30(2), 321–332.

    Google Scholar 

  • Powers, S. E., Loureiro, C. O., Abriola, L. M. and Weber, W. J.: 1991, Theoretical study of the significance of nonequilibrium dissolution on nonaqueous phase liquids in subsurface systems, Water Resour. Res. 27(4), 463–477.

    Google Scholar 

  • Priddle, M. W. and MacQuarrie, K. T. B.: 1994, Dissolution of creosote in groundwater: an experimental and model investigation, J. Contam. Hydrol. 15, 27–56.

    Google Scholar 

  • Schwille, F.: 1988, Dense Chlorinated Solvents in Porous and Fractured Media, translated from German by J. F. Pankow, Lewis, Chelsea, MI.

  • Soerens, T. S., Sabatini, D. A. and Harwell, J. H.: 1994, The effects of heterogeneity on the kinetics of NAPL dissolution, EOS Trans. AGU, 75(44), 267.

    Google Scholar 

  • VanderKwaak, J. E. and Sudicky, E. A.: 1996, Dissolution of non-aqueous-phase liquids and aqueous-phase contaminant transport in discretely-fractured porous media, J. Contam. Hydrol. 23, 45–68.

    Google Scholar 

  • Voundrias, E. A. and Assaf, K. S.: 1996, Theoretical evaluation of dissolution and biochemical reduction of TNT for phytoremediation of contaminated sediments, J. Contam. Hydrol. 23, 245–261.

    Google Scholar 

  • Voudrias, E. A. and Yeh, M.: 1994, Dissolution of a toluene pool under constant and variable hydraulic gradients with implications for aquifer remediation, Ground Water 32(2), 305–311.

    Google Scholar 

  • Welty, J. R., Wicks, C. E. and Wilson, R. E.: 1969, Fundamentals of Momentum, Heat and Mass Transfer, Wiley, New York, NY.

    Google Scholar 

  • Whelan, M. P., Voudrias, E. A. and Pearce, A.: 1994, DNAPL pool dissolution in saturated porous media: Procedure development and preliminary results, J. Contam. Hydrol. 15, 223–237.

    Google Scholar 

  • Williamson, J. E., Bazazaire, K. E. and Geankoplis, C. J.: 1963, Liquid-phase mass transfer at low Reynolds numbers, Ind. Engng Chem. Fund. 2(2), 126–129.

    Google Scholar 

  • Wilson, E. J. and Geankoplis, C. J.: 1966, Liquid mass transfer at very low Reynolds numbers in packed beds, Ind. Engng Chem. Fund. 5(1), 9–14.

    Google Scholar 

  • Zaidel, J. and Russo, D.: 1993, Analytical models of steady-state organic species transport in the vadose zone with kinetically controlled volatilization and dissolution, Water Resour. Res. 29(10), 3343–3356.

    Google Scholar 

  • Zilliox, L., Muntzer, P. and Fried, J. J.: 1978, An estimate of the source of a phreatic aquifer pollution by hydrocarbons: Oil-water contact and transfer of soluble substances in groundwater, In International Symposium on Ground Water Pollution by Oil Hydrocarbons, Prague, pp. 209–227.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Dillard, L.A. & Blunt, M.J. A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone. Transport in Porous Media 39, 227–255 (2000). https://doi.org/10.1023/A:1006693126316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006693126316

Navigation