Skip to main content
Log in

Semiempirical Estimation of Thermal Expansion Coefficients and Isobaric Heat Capacities of Fluorite-Type Compounds

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal expansion coefficients and isobaric heat capacities of fluorite-type compounds have been estimated using the Morse potential and the Debye model. The Born repulsion parameters of various compounds, which are necessary for determining the parameters of the Morse potential, have been determined empirically for elements belonging to every period of the periodic table. Using the parameters thus determined, the Debye temperature, the thermal expansion coefficient, and the Gruneisen constant of fluorite-type compounds have been calculated and then the isochoric and the isobaric heat capacities have been calculated over a wide range of temperatures. The calculated thermal expansion coefficients and isobaric heat capacities thus obtained are in good agreement with experimental values except for the anomalous temperature regions due to vacancy formation and phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. R. Reeber, Phys. Stat. Solids a 32:321 (1975).

    Google Scholar 

  2. K. Wang and R. R. Reeber, J. Phys. Chem. Solids 56:895 (1995).

    Google Scholar 

  3. Z. Gong, G. K. Horton, and E. R. Cowley, Phys. Rev. 40:3294 (1989).

    Google Scholar 

  4. L. L. Boyer, Phys. Rev. Lett. 42:584 (1979).

    Google Scholar 

  5. M. P. Madan, Physica 12B:35 (1984).

    Google Scholar 

  6. A. R. Ruffa, J. Mater. Sci. 15:2258 (1980).

    Google Scholar 

  7. A. R. Ruffa, J. Mater. Sci. 15:2268 (1980).

    Google Scholar 

  8. Y. S. Touloukian and E. H. Buyco, Thermophysical Properties of Matter, Vol. 5. Specific Heat of Nonmetallic Solids (Plenum, New York, 1970).

    Google Scholar 

  9. H. Inaba, J. J. Appl. Phys. 35:3522 (1996).

    Google Scholar 

  10. H. Inaba, J. J. Appl. Phys. 35:4730 (1996).

    Google Scholar 

  11. H. Inaba and H. Tagawa, J. Ceram. Soc. Japan 35:4730 (1996).

    Google Scholar 

  12. H. Inaba, J. Phase Equil. 20:187 (1999).

    Google Scholar 

  13. A. R. Ruffa, J. Chem. Phys. 83:6405 (1985).

    Google Scholar 

  14. Y. S. Touloukian, R. K. Kibby, R. E. Taylor, and T. Y. R. Lee, Thermophysical Properties of Matter, Vol. 13. Thermal Expansion of Nonmetallic Solids (Plenum, New York, 1970).

    Google Scholar 

  15. D. Taylor, Br. Ceram. Trans. J. 83:32 (1984).

    Google Scholar 

  16. A. C. Momin and M. D. Karkhanavala, High Temp. Sci. 10:45 (1978).

    Google Scholar 

  17. M. Tokar, A. W. Nutt, and T. K. Keenan, Nucl. Technol. 17:147 (1973).

    Google Scholar 

  18. T. Yamashita, H. Muto, T. Tsuji, and Y. Nakamura, J. Alloys Comp. 271-273:404 (1988).

    Google Scholar 

  19. A. C. Bailey and B. Yates, Proc. Phys. Soc. 91:390 (1967).

    Google Scholar 

  20. D. N. Batchelder and R. O. Simmons, J. Chem Phys. 41:2327 (1964).

    Google Scholar 

  21. G. K. White, J. Phys. C Solid State Phys. 13:4905 (1980).

    Google Scholar 

  22. R. K. Singh and N. K. Pandy, Phys. Stat. Solids b 115:555 (1983).

    Google Scholar 

  23. R. K. Singh, S. P. Sanyal, and N. K. Pandy, J. Chem Phys. 67:2596 (1982).

    Google Scholar 

  24. S. S. Todd, J. Am. Chem. Soc. 71:4115 (1949).

    Google Scholar 

  25. B. F. Naylor, J. Am. Chem. Soc. 67:150 (1945).

    Google Scholar 

  26. K. K. Kelley, Ind. Eng. Chem. 36:377 (1944).

    Google Scholar 

  27. J. P. Coughlin and E. G. King, J. Am. Chem. Soc. 72:2262 (1950).

    Google Scholar 

  28. E. F. Westrum and A. F. Beale, J. Phys. Chem. 65:353 (1961).

    Google Scholar 

  29. E. G. King and A. U. Christensen, U.S. Bur. Mines Rep. Invest. RI-5789:1 (1961).

    Google Scholar 

  30. D. W. Osborne and E. F. Westrum, J. Chem. Phys. 21:1884 (1953).

    Google Scholar 

  31. J. J. Huntzicker and E. F. Westrum, J. Chem. Thermodyn. 3:61 (1971).

    Google Scholar 

  32. H. L. Flotow, D. W. Osborne, S. M. Fried, and J. G. Malm, J. Chem. Phys. 65:1124 (1976).

    Google Scholar 

  33. G. L. Hyland and R. W. Ohse, J. Nucl. Mater. 140:149 (1986).

    Google Scholar 

  34. J. Ralph, J. Chem. Soc. Faraday Trans. 2 83:1253 (1987).

    Google Scholar 

  35. J. K. Fink, Int. J. Thermophys. 3:165 (1982).

    Google Scholar 

  36. F. Gronvold, N. J. Kveseth, A. Sveen, and J. Tichy, J. Chem. Thermodyn. 2:665 (1970).

    Google Scholar 

  37. M. T. Hatchings, J. Chem. Soc. Faraday Trans. 2 83:1083 (1987).

    Google Scholar 

  38. R. Osborne, B. C. Boland, Z. A. Bowden, A. D. Tayler, M. A. Hackett, W. Hayes, and M. T. Hatchings, J. Chem. Soc. Faraday Trans. 2 83:1105 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inaba, H. Semiempirical Estimation of Thermal Expansion Coefficients and Isobaric Heat Capacities of Fluorite-Type Compounds. International Journal of Thermophysics 21, 249–268 (2000). https://doi.org/10.1023/A:1006673308460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006673308460

Navigation