Skip to main content
Log in

On the Modelling of Generalized Taylor–Aris Dispersion in Chromatographs via Multiple Scales Expansions

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper is devoted to the computation of effective equations for the transport of a solute in a chromatograph. We focus our attention on models that retain dispersion effects. A chromatograph is a biporous periodic heterogeneous medium, made up of macropores, and of small porous adsorbing crystals that have a retention effect on the solute. We use the method of multiple scales expansions. Various macroscopic behaviours appear, according to the respective orders of magnitude of the dimensionless characteristic parameters: Peclet number in the macropores, ratio of the characteristic time of diffusion in the macropores to the characteristic time of diffusion in the crystals, adsorption coefficient. Dispersion occurs for a Peclet number of order ε−1. We then discuss the effective behaviour of the solute, with respect to the orders of magnitude of the other characteristic parameters. To our knowledge, most of the models are new. Our modelling is not restricted to chromatographs. It applies to various situations of physic and chemical engineering: fixed bed reactors, catalytic cracking, ground water for instance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization and two scale-convergence, SIAM J. Math. An. 23(26) (1992), 1482–1518.

    Google Scholar 

  2. Amaral Souto, H. P.: diffusion–dispersion en milieu poreux: étude numérique du tenseur de dispersion pour quelques arrangements périodiques bidimensionnels “ordonnés” et “désordonn és”, thèse de l'Institut National Polytechnique de Lorraine, 1993.

  3. Aris, R.: On the dispersion of a solute in a fluid flowing through a tube, Proc. Roy. Soc. Lond. A 235 (1956), 67–77.

    Google Scholar 

  4. Auriault, J. L.: Heterogeneous medium. Is an equivalent macroscopic description possible? Int. J. Engng Sci. 29(7) (1991), 785–795.

    Google Scholar 

  5. Auriault, J. L. and Adler, P. M.: Taylor dispersion in porous media: analysis by multiple scale expansions, Adv. Water Res. 18(4) (1995) 217–226.

    Google Scholar 

  6. Auriault, J. L., Lewandowska, J.: Macroscopic modelling of pollutant transport in porous media, Arch. Mech. 45(I) (1993) 51–64.

    Google Scholar 

  7. Auriault, J. L. and Lewandowska, J.: Modelling of pollutant migration in porous media with interfacial transfer: local equilibrium/non-equilibrium, Mechanics of Cohesive-Frictional Materials 2 (1997), 205–221.

    Google Scholar 

  8. Bear, J.: Hydrodynamic Dispersions in Flow Through Porous Media, In: (R. de Wiest (ed.), Academic Press, New York, 1969.

    Google Scholar 

  9. Brenner, H.: Dispersion resulting from flow through spatially periodic porous media, Phil. Trans. Roy. Soc. Lond. 297 (1980), 81–133.

    Google Scholar 

  10. Carbonell, R. G. and Whitaker, S.: Dispersion in pulsed systems II, theoretical developments for passive dispersion in porous media, Chem. Engng Sci. 38 (1983), 1795–1802.

    Google Scholar 

  11. Dagan, G.: Flow and Transport in Porous Formations, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  12. De Josselin de Jong, G.: Longitudinal and transverse diffusion in granular deposits, Trans. Am. Geophys. Union 39(1) (1958), 67–74.

    Google Scholar 

  13. Frankel, I. and Brenner, H.: Dispersion resulting from flow through spatially periodic porous media, J. Fluid Mech. 204 (1989), 97–191.

    Google Scholar 

  14. Golay, M. J. E.: Theory of Chromatography in Open and Coated Tubular Columns with Round and Rectangular Cross-sections, In: D. H. Desty (ed.), Butterworths, London, 1958, pp. 36–55.

    Google Scholar 

  15. Mei, C. C.: Method of homogenization applied to dispersion in porous media, Transport in Porous Media 9 (1992), 261–274.

    Google Scholar 

  16. Rubinstein, J. and Mauri, R.: Dispersion and convection in periodic porous media, SIAM, J. Appl. Math. 46(6) (1986), 1019–1023.

    Google Scholar 

  17. Saffman, P. G.: A theory of dispersion in porous medium, J. Fluid Mech. 6 (1959), 321–349.

    Google Scholar 

  18. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics N 127, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  19. Scheidegger, A. E.: A general theory of dispersion in porous media, J. Geophys. Res. 66(10) (1961), 3273–3278.

    Google Scholar 

  20. Taylor, G. I.: Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc. Lond. A 223 (1954).

  21. Valentin, P.: Chromatographie en phase gazeuse, thèse d'état, université de Paris VI, 1971.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canon, É., Bensmina, H. & Valentin, P. On the Modelling of Generalized Taylor–Aris Dispersion in Chromatographs via Multiple Scales Expansions. Transport in Porous Media 36, 307–339 (1999). https://doi.org/10.1023/A:1006654621514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006654621514

Navigation