Skip to main content
Log in

Novikov–Shubin Signatures, I

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Torsion objects of von Neumann categories describe thephenomenon “spectrum near zero” discovered by Novikov and Shubin. Inthis paper we classify Hermitian forms on torsion objects of a finitevon Neumann category. We prove that any such Hermitian form can berepresented as the discriminant form of a degenerate Hermitian form on aprojective module. We also find the relation between the Hermitian formson projective modules which holds if and only if their discriminantforms are congruent. A notion of superfinite von Neumann category isintroduced. It is proven that the classification of torsion Hermitianforms in a superfinite category can be completely reduced to theisomorphism types of their positive and the negative parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F.: Elliptic operators, discrete groups and von Neumann algebras, Astérisque 32/33 (1976), 43–72.

    Google Scholar 

  2. Bayer-Fluckiger, E. and Fainsilber, L.: Non unimodular Hermitian forms, Invent. Math. 123 (1996), 233–240.

    Google Scholar 

  3. Cheeger, J. and Gromov, M.: L2-cohomology and group cohomology, Topology 25 (1986), 189–215.

    Google Scholar 

  4. Dieudonné, J. A.: Quasi-hermitian operators, in J. A. Dieudonné (ed.), Proceedings International Symposium in Linear Spaces, Jerusalem, Pergamon, Oxford, 1961, pp. 115–122.

    Google Scholar 

  5. Dijksma, A., Langer, H. and de Snoo, H.: Unitary Colligations in Krein Spaces and the Extension Theory of Isometries and Symmetric Linear Relations in Hilbert Spaces, Lecture Notes in Math. 1242, Springer-Verlag, Berlin, 1987, pp. 1–42.

    Google Scholar 

  6. Dixmier, J.: Von Neumann Algebras, North-Holland, Amsterdam, 1981.

    Google Scholar 

  7. Dunford, N. and Schwartz, J.: Linear Operators, Part I, Interscience Publishers, New York, 1958.

    Google Scholar 

  8. Farber,M.: Abelian categories, Novikov–Shubin invariants, andMorse inequalities, C. R. Acad. Sci. Paris 321 (1995), 1593–1598.

    Google Scholar 

  9. Farber, M.: Homological algebra of Novikov–Shubin invariants and Morse inequalities, GAFA 6 (1996), 628–665.

    Google Scholar 

  10. Farber, M.: Von Neumann categories and extended L2 cohomology, K-Theory 15 (1998), 347–405.

    Google Scholar 

  11. Farber, M.: Geometry of growth: Approximation theorems for L2 invariants, Math. Annal. 311 (1998), 335–375.

    Google Scholar 

  12. Ghez, P., Lima, R. and Roberts, J. E.: W_-categories, Pacific J. Math. 120 (1985), 79–109.

    Google Scholar 

  13. Gohberg, I. and Krupnik, N.: Introduction to Theory of One-Dimensional Singular Integral Operators, Kishinev, 1973.

  14. Gromov, M.: Asymptotic Invariants of Infinite Groups, London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press, 1993.

  15. Gromov, M. and Shubin, M. A.: Von Neumann spectra near zero, GAFA 1 (1991), 375–404.

    Google Scholar 

  16. Gromov, M. and Shubin, M.: Near-cohomology of Hilbert complexes and topology of nonsimply connected manifolds, Astérisque 210 (1992), 283–294.

    Google Scholar 

  17. Grothendieck, A.: Sur quelques points d'algébre homologique, Tôhoku Math. J. 9 (1957), 119–221.

    Google Scholar 

  18. Lax, P.: Symmetrizable linear transformations, Comm. Pure Appl. Math. 7 (1954), 633–647.

    Google Scholar 

  19. Lott, J. and Lück, W.: L2-topological invariants of 3-manifolds, Invent. Math. 120 (1995), 15–60.

    Google Scholar 

  20. Lück, W.: Hilbert modules and modules over finite von Neumann algebras and applications to L2-invariants, Math. Ann. 309 (1997), 247–285.

    Google Scholar 

  21. Lück, W.: Dimension theory of arbitrary modules over finite von Neumann algebras and L2-Betti numbers I: Foundations, J. Reine Angew. Math. 495 (1998), 135–162.

    Google Scholar 

  22. Lück, W.: Dimension theory of arbitrary modules over finite von Neumann algebras and L2-Betti numbers II: Applications to Grothendieck groups, J. Reine Angew. Math. 496 (1998), 213–236.

    Google Scholar 

  23. Lück, W.: Approximating L2-invariants by their finite dimensional analogues, GAFA 4 (1994), 455–481.

    Google Scholar 

  24. Nikulin, V. V.: Integral symmetric bilinear forms and some of their geometrical applications, Math. USSR-Izv. 14 (1980), 103–167.

    Google Scholar 

  25. Novikov, S. P. and Shubin, M. A.: Morse inequalities and von Neumann invariants of nonsimply connected manifolds, Uspekhi Mat. Nauk 41 (1986), 222.

    Google Scholar 

  26. Novikov, S. P. and Shubin, M. A.: Morse inequalities and von Neumann II1-factors, Dokl. Akad. Nauk SSSR 289 (1986), 289–292.

    Google Scholar 

  27. Palais, R. S.: Seminar on the Atiyah–Singer Index Theorem, Ann. of Math. Stud. 77, Princeton University Press, Princeton, NJ. 1965.

    Google Scholar 

  28. Quebbemann, H.-G., Scharlau, W. and Schulte, M.: Quadratic and Hermitian forms in additive and Abelian categories, J. Algebra 59 (1979), 264–289.

    Google Scholar 

  29. Ranicki, A.: Algebraic L-theory, I: Foundations, Proc. London Math. Soc. 27 (1973), 101–125.

    Google Scholar 

  30. Ranicki, A.: Additive L-theory, K-Theory 3 (1989), 163–195.

    Google Scholar 

  31. Wall, C. T. C.: Surgery on Compact Manifolds, Academic Press, Boston, MA, 1970.

    Google Scholar 

  32. Wall, C. T. C.: On the axiomatic foundation of the theory of Hermitian forms, Proc. Cambridge Philos. Soc. 67 (1970), 243–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farber, M. Novikov–Shubin Signatures, I. Annals of Global Analysis and Geometry 18, 477–515 (2000). https://doi.org/10.1023/A:1006653606519

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006653606519

Navigation