Skip to main content

Advertisement

Log in

Cytogenetic analyses of secondary liver tumors reveal significant differences in genomic imbalances between primary and metastatic colon carcinomas

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

To investigate if karyotypic features of secondary liver tumors may provide diagnostic information and if the cytogenetic patterns of primary and metastatic colorectal carcinomas (CRC) are different, 33 liver metastases were analyzed: 25 CRC, 4 small intestine carcinoids, 1 ovarian carcinoid, 1 lobular breast cancer, 1 head-and-neck squamous cell carcinoma, and 1 uveal malignant melanoma. Chromosomal aberrations were detected in 24 cases, whereas 5 had normal karyotypes and 4 were uninformative due to lack of mitoses. Trisomy 12 was detected in 2 small intestine carcinoids, suggesting that +12 may be of pathogenetic importance in this tumor type. The breast and head-and-neck carcinomas and the uveal melanoma displayed aberrations previously reported as characteristic in primary tumors, e.g., der(1;16) and deletion of 3p in the breast cancer, losses of 3p and 8p and partial gain of 8q in the head-and-neck carcinoma, and monosomy 3 and i(8)(q10) in the uveal melanoma, indicating that cytogenetic investigations provide important diagnostic information in secondary liver tumors. In the 18 CRC metastases with chromosomal abnormalities, the cytogenetic findings agreed well with previously reported primary CRC. Common numerical abnormalities included gains of chromosomes 7, 11, 13, and 20, and losses of Y, 4, 18, 21, and 22. Structural rearrangements most often affected chromosome bands 1p13, 1q10, 3p21, 5q10, 5q11, 7q10, 8q10, 8q11, 12q13, 16p13, 17p11, 20p13, 20p11, and 20q10, and frequently resulted in losses of 1p, 8p, and 17p, and gains of 5p, 6p, 7p, 8q, and 20q. Comparing the present cases with primary CRC previously analyzed in our department revealed that additional gains of 6p, 6q, 7p, and 20q, and losses of 1p, 4p, 4q, 8p, 18p, 18q, and 22 were more common (P<0.05) in the metastases, suggesting that these genomic sites harbor genes of importance in the metastatic process of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Okuda K, Kojiro M, Okuda H. Neoplasms of the liver. In Schiff L, chiff ER (eds): Diseases of the Liver, 7th ed. Philadelphia: J.B. Lippincott Company 1993; 1236–96.

  2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis.Cell 1990; 61: 759–67.

    Article  PubMed  CAS  Google Scholar 

  3. Houlston RS, Tomlinson IP. Genetic prognostic markers in colorectal cancer. Mol Pathol 1997; 50: 281–8.

    PubMed  CAS  Google Scholar 

  4. Radinsky R. Molecular mechanisms for organ-specific colon carcinomametastasis. Eur J Cancer 1995; 31: 1091–5.

    Article  Google Scholar 

  5. Ding S-F, Delhanty JDA, Zografos G et al. Chromosome allele loss in colorectal liver metastases and its association with clinical features. Br J Surg 1994; 81: 875–8.

    PubMed  CAS  Google Scholar 

  6. Thorstensen L, Qvist H, Nesland JM et al. Allelotype profiles of local recurrences and distant metastases from colorectal-cancer patients. Int J Cancer 1996; 69: 452–6.

    Article  PubMed  CAS  Google Scholar 

  7. Paredes-Zaglul A, Kang JJ, Essig Y-P et al. Analysis of colorectal cancer by comparative genomic hybridization: Evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res 1998; 4: 879–86.

    PubMed  CAS  Google Scholar 

  8. Korn WM, Yasutake T, Kuo W-L et al. Chromosome arm 20 gains and other genomic alterations in colorectal cancer metastatic to liver, as analyzed by comparative genomic hybridization and fluorescence in situ hybridization. Genes Chromosomes Cancer 1999; 25: 82–90.

    Article  PubMed  CAS  Google Scholar 

  9. Al-Mulla F, Keith WN. Pickford IR et al. Comparative genomic hybridization analysis of primary colorectal carcinomas and their synchronous metastases. Genes Chromosomes Cancer 1999; 24: 306–14.

    Article  PubMed  CAS  Google Scholar 

  10. Kastrinakis WV, Ramchurrem N, Rieger KM et al. Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression. Oncogene 1995; 11: 647–52.

    PubMed  CAS  Google Scholar 

  11. Heim S, Mitelman F. Cancer Cytogenetics, 2nd ed. New York: Wiley-Liss 1995.

    Google Scholar 

  12. Mitelman F, Johansson B, Mandahl N, Mertens F. Clinical signifi-cance of cytogenetic finding in solid tumors. Cancer Genet Cytogenet 1997; 95: 1–8.

    Article  PubMed  CAS  Google Scholar 

  13. Sandberg A, Chen Z. Cancer cytogenetics and molecular genetics: Detection and therapeutic strategy. In Vivo 1994; 8: 807–18.

    PubMed  CAS  Google Scholar 

  14. Mitelman F, ed. Catalog of Chromosome Aberrations in Cancer 98. CD-ROM. Version 1. New York: Wiley-Liss 1998.

    Google Scholar 

  15. Reichmann A, Martin P, Levin B. Chromosomal banding patterns in human large bowel cancer. Int J Cancer 1981; 28: 431–40.

    PubMed  CAS  Google Scholar 

  16. Muleris M, Salmon RJ, Dutrillaux AM et al. Characteristic chromosomalimbalances in 18 near-diploid colorectal tumors. Cancer Genet Cytogenet 1987; 29: 289–301.

    Article  PubMed  CAS  Google Scholar 

  17. Bardi G, Johansson B, Pandis N et al. Cytogenetic analysis of 52 colorectal carcinomas - non-random aberration pattern and correlation with pathologic parameters. Int J Cancer 1993; 55: 422–8.

    PubMed  CAS  Google Scholar 

  18. Bardi G, Johansson B, Pandis N et al. Cytogenetic aberrations in colorectal adenocarcinomas and their correlation with clinicopathologic features. Cancer 1993; 71: 1306–14.

    Article  Google Scholar 

  19. Bardi G, Sukhikh T, Pandis N et al. Karyotypic characterization of colorectal adenocarcinomas. Genes Chromosomes Cancer 1995; 12: 97–109.

    PubMed  CAS  Google Scholar 

  20. Bardi G, Parada LA, Bomme L et al. Cytogenetic findings in metastasesfrom colorectal cancer. Int J Cancer 1997; 72: 604–7.

    Article  PubMed  CAS  Google Scholar 

  21. Grégoire M, Blotière HM, Muleris M et al. Karyotypic and phenotypic variations between cell lines established from a primary colorectal tumour and two corresponding metastases from one patient. Invasion Metastasis 1993; 13: 253–66.

    PubMed  Google Scholar 

  22. Chen T-R, Chang AE. Liver metastases of a human colorectal cancercontaining two actively growing subclones. Anticancer Res 1998; 18:13–6.

    PubMed  Google Scholar 

  23. Parada LA, Hallén M, Tranberg K-G et al. Frequent rearrangements of chromosomes 1, 7, and 8 in primary liver cancer. Genes Chromosomes Cancer 1998; 23: 26–35.

    Article  PubMed  CAS  Google Scholar 

  24. ISCN. An International System for Human Cytogenetic Nomenclature.Mitelman F (ed). Basel: Karger 1995.

    Google Scholar 

  25. Mitelman F, Mertens F, Johansson B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet 1997; 15: 417–74.

    Article  PubMed  CAS  Google Scholar 

  26. Ilson DH, Motzer RJ, Rodriquez E et al. Genetic analysis in the diagnosisof neoplasms of unknown primary tumor site. Semin Onco 1993; 20: 229–37.

    CAS  Google Scholar 

  27. Motzer RJ, Rodriguez E, Reuter VE et al. Molecular and cytogenetic studies in the diagnosis of patients with poorly differentiated carcinoma of unknown primary site. J Clin Oncol 1995; 13: 274–82.

    PubMed  CAS  Google Scholar 

  28. Juliusson G, Gahrton G. Chromosome aberrations in B-cell chronic lymphocytic leukemia. Pathogenetic and clinical implications. Cancer Genet Cytogenet 1990; 45: 143–60.

    Article  PubMed  CAS  Google Scholar 

  29. Pejovic T, Heim S, Mandahl N et al. Trisomy 12 is a consistent chromosomalaberration in benign ovarian tumors. Genes Chromosomes Cancer 1990; 2: 48–52.

    PubMed  CAS  Google Scholar 

  30. Nilbert M, Heim S, Mandahl N et al. Trisomy 12 in uterine leiomyomas.A new cytogenetic subgroup. Cancer Genet Cytogenet 1990;45: 63–6.

    Article  PubMed  CAS  Google Scholar 

  31. Adeyinka A, Pandis N, Bardi G et al. A subgroup of breast carcinomasis cytogenetically characterized by trisomy 12. Cancer Genet Cytogenet 1997; 97: 119–21.

    Article  PubMed  CAS  Google Scholar 

  32. Bardi G, Johansson B, Pandis N et al. Cytogenetic findings in three primary hepatocellular carcinomas. Cancer Genet Cytogenet 1992;58: 191–5.

    Article  PubMed  CAS  Google Scholar 

  33. Parada LA, Bardi G, Hallén M, et al. Cytogenetic abnormalities and clonal evolution in an adult hepatoblastoma. Am J Surg Pathol 1997;21: 1381–6.

    Article  PubMed  CAS  Google Scholar 

  34. Frank CJ, McClatchey KD, Devaney KO, Carey TE. Evidence that loss of chromosome 18q is associated with tumor progression. Cancer Res 1997; 57: 824–7.

    PubMed  CAS  Google Scholar 

  35. Nanashima A, Yamaguchi H, Yasutake T et al. Gain of chromosome.20 is a frequent aberration in liver metastasis of colorectal cancer. Dig Dis Sci 1997; 42: 1388–93.

    Article  PubMed  CAS  Google Scholar 

  36. Komiya A, Suzuki H, Ueda T et al. Allelic losses at loci on chromosome10 are associated with metastasis and progression of human prostate cancer. Genes Chromosomes Cancer 1996; 17: 245–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parada, L.A., Marañon, A., Hallén, M. et al. Cytogenetic analyses of secondary liver tumors reveal significant differences in genomic imbalances between primary and metastatic colon carcinomas. Clin Exp Metastasis 17, 471–479 (1999). https://doi.org/10.1023/A:1006646901556

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006646901556

Navigation