Skip to main content
Log in

Description of Extremal Polynomials on Several Intervals and their Computation. I

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let Et = ∪j=1l [a2j-1, a2j], a1 < a2 < ... < a2l. First we give a complete characterization of that polynomial of degree n which has n + l extremal points on El. Such a polynomial is called T-polynomial because it shares many properties with the classical Chebyshev polynomial on [−1,1], e.g., it is minimal with respect to the maximum norm on El, its derivative is minimal with respect to the L1-norm on El, etc. It is known that T-polynomials do not exist on every El. Then it is demonstrated how to generate in a very simple illustrative geometric way from a T-polynomial on l intervals a T-polynomial on l or more intervals. For the case of two and three intervals a complete description of those intervals on which there exists a T-polynomial is provided. Finally, we show how to compute T-polynomials by Newton's method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Achieser, Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abweichen, Bull. Phys. Math., 3 (1929), 1–69.

    Google Scholar 

  2. N. I. Achieser, Über einige Funktionen, welche in zwei gegebenen Intervallen am wenigsten von Null abweichen, Bull. Acad. Sci. URSS, 7 (1932), 1163–1202.

    Google Scholar 

  3. A. I. Aptekarev, Asymptotic properties of polynomials orthogonal on a system of contours and periodic motions of Toda Lattices, Math. USSR Sbornik, 53 (1986), 233–260.

    Google Scholar 

  4. W. E. Ferguson Jr., H. Flaschka and D. W. McLaughlin, Nonlinear normal modes for the Toda chain, J. Comput. Physics, 45 (1982), 157–209.

    Google Scholar 

  5. B. Fischer, Chebyshev polynomials for disjoint compact sets, Constr. Approx., 8 (1992), 309–329.

    Google Scholar 

  6. H. Hochstadt, On the theory of Hill's matrices and related inverse spectral problems, Lin. Alg. Appl., 11 (1975), 41–52.

    Google Scholar 

  7. H. Hochstadt, An inverse spectral theorem for a Hill's matrix, Lin. Alg. Appl., 57 (1984), 21–30.

    Google Scholar 

  8. A. Kroó, On uniqueness of best L 1-approximation on disjoint intervals, Math. Z., 191 (1986), 507–512.

    Google Scholar 

  9. G. G. Lorentz, Approximations of Functions, Holt, Rinehart and Wista (New York, 1966).

    Google Scholar 

  10. F. Peherstorfer, On Tehebycheff polynomials on disjoint intervals, in: Colloq. Math. Soc. Bolyai, 49. Haar Mem. Conf. (Budapest, 1985), pp. 737–751.

    Google Scholar 

  11. F. Peherstorfer, Orthogonal polynomials in L 1-approximation, J. Approx. Th., 52 (1988), 241–268.

    Google Scholar 

  12. F. Peherstorfer, On Gauss quadrature formulas with equal weights, Num. Math., 52 (1988), 317–327.

    Google Scholar 

  13. F. Peherstorfer, Orthogonal and Chebyshev polynomials on two intervals, Acta Math. Hungar., 55 (1990), 245–278.

    Google Scholar 

  14. F. Peherstorfer, On Bernstein-Szegö orthogonal polynomials on several intervals II: Orthogonal polynomials with periodic recurrence coefficients, J. Approx. Th., 64 (1991), 123–161.

    Google Scholar 

  15. F. Peherstorfer, On orthogonal and extremal polynomials on several intervals, J. Comp. Appl. Math., 48 (1993), 187–205.

    Google Scholar 

  16. F. Peherstorfer, Elliptic orthogonal and extremal polynomials, Proc. London Math. Soc., 70 (1995), 605–624.

    Google Scholar 

  17. A. Pinkus and Z. Ziegler, Interlacing properties of the zeros of the error function in best L p-approximations, J. Approx. Th., 27 (1979), 1–18.

    Google Scholar 

  18. T. J. Rivlin, The Chebyshev Polynomials, Wiley & Sons (New York, 1974).

    Google Scholar 

  19. M. L. Sodin and P. M. Yuditskii, Algebraic solution of E. I. Zolotarev and N. I. Akbiezer problems on polynomials that deviate least from zero, Teor. Funktsii Funktsional Anal. i Prilozhen, 56 (1991), 56–64.

    Google Scholar 

  20. M. L. Sodin and P. M. Yuditskii, Functions deviating least from zero on closed subsets of the real axis, St. Petersburg Math. J., 4 (1993), 201–249.

    Google Scholar 

  21. M. Toda, Theory of Nonlinear Lattices, Springer Series in Solid State Sciences 20 (Berlin, 1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiefermayr, K., Peherstorfer, F. Description of Extremal Polynomials on Several Intervals and their Computation. I. Acta Mathematica Hungarica 83, 27–58 (1999). https://doi.org/10.1023/A:1006607401740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006607401740

Keywords

Navigation