Skip to main content
Log in

Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Molten Salts with a Transient Short-Hot-Wire Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A transient short-hot-wire technique has been successfully used to measure the thermal conductivity and thermal diffusivity of molten salts (NaNO3, Li2CO3/K2CO3, and Li2CO3/Na2CO3) which are highly corrosive. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a short wire with the same length-to-diameter ratio and boundary conditions as those used in the actual experiments. In the present study, the wires are coated with a pure Al2O3 thin film by using a sputtering apparatus. The length and radius of the hot wire and the resistance ratio of the lead terminals and the entire probe are calibrated using water and toluene with known thermophysical properties. Using such a calibrated probe, the thermal conductivity and thermal diffusivity of molten nitrate are measured within errors of 3 and 20%, respectively. Also, the thermal conductivity of the molten carbonates can be measured within an error of 5%, although the thermal diffusivity can be measured within an error of 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Shibata, H. Ohta, and Y. Waseda, Mater. Trans. JIM 32:837 (1991).

    Google Scholar 

  2. M. J. Assael, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, in Experimental Thermodynamics, Vol. III. Measurement of the Transport Properties of Fluid, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), Chap. 7.

    Google Scholar 

  3. Y. Nagasaka and A. Nagashima, Trans. JSME 47:1323 (1981).

    Google Scholar 

  4. X. Zhang, T. Tomimura, and M. Fujii, in Proc. 14th Japan Symp. Thermophys. Prop. (Jpn. Soc. Thermophys. Prop., 1993), pp. 23-26.

  5. M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, and T. Sakamoto, Int. J. Thermophys. 18:327 (1997).

    Google Scholar 

  6. C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengove, and W. A. Wakeham, J. Phys. Chem. Ref. Data 15:1073 (1986).

    Google Scholar 

  7. N. Nagasaka and A. Nagashima, Rev. Sci. Instrum. 52:229 (1981).

    Google Scholar 

  8. S. T. Ro, J. H. Lee, and J. Y. Yoo, in Thermal Conductivity 21 (Plenum Press, New York, 1990), pp. 151-164.

    Google Scholar 

  9. X. Zhang, S. Fujiwara, Z. Qi, and M. Fujii, J. Jpn. Soc. Micrograv. Appl. 16(2):129 (1999).

    Google Scholar 

  10. K. Kobayashi, N. Araki, and Y. Iida, in Proc. 7th Int. Heat Transfer Conf., Vol. 6 (1982), pp. 467-472.

    Google Scholar 

  11. S. Kitade, Y. Kobayashi, Y. Nagasaka, and A. Nagashima, High Temp.-High Press. 21:219 (1989).

    Google Scholar 

  12. JSME Data Book: Heat Transfer, 4th ed. (1986).

  13. N. Araki, M. Matsuura, and T. Hirata, in Proc. 8th Japan Symp. Thermophys. Prop. (Jpn. Soc. Thermophys. Prop., 1987), pp. 1-4.

  14. S. Otsubo, Y. Nagasaka, and A. Nagashima, Trans. JSME 61:806 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Fujii, M. Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Molten Salts with a Transient Short-Hot-Wire Method. International Journal of Thermophysics 21, 71–84 (2000). https://doi.org/10.1023/A:1006604820755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006604820755

Navigation