Skip to main content
Log in

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The influence of model flexibility upon simulated viscosity was investigated. Nonequilibrium molecular dynamics (NEMD) simulations of viscosity were performed on seven pure fluids using three models for each: one with rigid bonds and angles, one with flexible angles and rigid bonds, and one with flexible bonds and angles. Three nonpolar fluids (propane, n-butane, and isobutane), two moderately polar fluids (propyl chloride and acetone), and two strongly polar fluids (methanol and water) were studied. Internal flexibility had little effect upon the simulated viscosity of nonpolar fluids. While model flexibility did affect the simulated viscosity of the polar fluids, it did so principally by allowing a density-dependent change in the dipole moment of the fluid. By using a rigid model with the same geometry and dipole moment as the average flexible molecule at the same density, it was shown that the direct effect of flexibility is small even in polar fluids. It was concluded that internal model flexibility does not enhance the accuracy of viscosities obtained from NEMD simulations as long as the appropriate model geometry is used in the rigid model for the desired simulation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Edberg, G. P. Morriss, and D. J. Evans, J. Chem. Phys. 86:4555 (1987).

    Article  Google Scholar 

  2. G. P. Morriss, P. J. Daivis, and D. J. Evans, J. Chem. Phys. 94:7420 (1991).

    Article  Google Scholar 

  3. R. L. Rowley and J. F. Ely, Mol. Phys. 72:831 (1991).

    Google Scholar 

  4. S. T. Cui, P. T. Cummings, and H. D. Cochran, J. Chem. Phys. 104:255 (1996).

    Article  Google Scholar 

  5. S. T. Cui, S. A. Gupta, P. T. Cummings, and H. D. Cochran, J. Chem. Phys. 105:1214 (1996).

    Article  Google Scholar 

  6. P. T. Cummings, H. D. Cochran, S. T. Cui, M. Mondello, G. S. Grest, and M. J. Stevens, J. Chem. Phys. 106:7303 (1997).

    Article  Google Scholar 

  7. I. G. Tironi, R. M. Brunne, and W. F. van Gunsteren, Chem. Phys. Lett. 250:19 (1996).

    Google Scholar 

  8. W. Allen and R. L. Rowley, J. Chem. Phys. 106:10273 (1997).

    Article  Google Scholar 

  9. N. Go and H. A. Scheraga, J. Chem. Phys. 51:4751 (1969).

    Google Scholar 

  10. M. R. Pear and J. H. Weiner, J. Chem. Phys. 71:212 (1979).

    Google Scholar 

  11. M. E. Van Leeuwen and B. Smit, J. Phys. Chem. 99:1831 (1995).

    Google Scholar 

  12. O. Teleman and A. Wallqvist, Mol. Phys. 74:515 (1991).

    Google Scholar 

  13. W. L. Jorgensen, J. D. Madura, and C. J. Swenson, J. Am. Chem. Soc. 106:6638 (1984).

    Google Scholar 

  14. O. Teleman, B. Joenson, and S. Engström, Mol. Phys. 69:193 (1987).

    Google Scholar 

  15. J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett. 30:123 (1975).

    Google Scholar 

  16. G. J. Evans and M. W. Evans, J. Chem. Soc. Faraday Trans. II 79:153 (1983).

    Google Scholar 

  17. W. L. Jorgensen and B. Bigot, J. Phys. Chem. 86:2867 (1982).

    Google Scholar 

  18. R. L. Rowley and J. F. Ely, Mol. Phys. 75:713 (1992).

    Google Scholar 

  19. D. R. Wheeler, N. G. Fuller, and R. L. Rowley, Mol. Phys. 92:55 (1997).

    Google Scholar 

  20. N. G. Fuller and R. L. Rowley, Int. J. Thermophys. 19:1039 (1998).

    Google Scholar 

  21. R. Edberg, G. P. Morriss, and D. J. Evans, J. Chem. Phys. 84:6933 (1986).

    Google Scholar 

  22. C. J. Mundy, J. I. Siepmann, and M. L. Klein, J. Chem. Phys. 102:3376 (1995).

    Article  Google Scholar 

  23. C. F. Beaton and G. F. Hewitt (eds.), Physical Property Data for the Design Engineer (Hemisphere, New York, 1989).

    Google Scholar 

  24. DIPPR Chemical Database Web Version, http://dippr.byu.edu (1999).

  25. W. F. Van Gunsteren, Mol. Phys. 40:1015 (1980).

    Google Scholar 

  26. J.-L. Barrat and I. R. McDonald, Mol. Phys. 70:535 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuller, N.G., Rowley, R.L. The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity. International Journal of Thermophysics 21, 45–55 (2000). https://doi.org/10.1023/A:1006600719847

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006600719847

Navigation