Skip to main content

Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions

Abstract

Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated on Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 °C for 2–3 days and produces lipid compounds ranging from C2 to >C35 which consist of n-alkanols, n- alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

This is a preview of subscription content, access via your institution.

References

  • Abrajano, T. A., Sturchio, N. C., Bohlke, J. K., Lyon, G. L., Poreda, R. J. and Stevens, C. M.: 1988, Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: Deep or shallow origin? Chem. Geol. 71, 211–222.

    Google Scholar 

  • Anders, E., Hayatsu, R. and Studier, M. H.: 1974, Interstellar molecules: Origin of catalytic reactions on grain surfaces? Astrophys. J. 192, 401–405.

    Google Scholar 

  • Anderson, R. B.: 1984, The Fischer-Tropsch Reaction (Academic Press, London).

    Google Scholar 

  • Asinger, F.: 1968, Paraffins. Chemistry and Technology (translated by B. J. Hazzard), Pergamon Press, Oxford.

    Google Scholar 

  • Bardy, R. C. III and Pettit, R.: 1981, On the mechanism of the Fischer-Tropsch reaction. The chain propagation step. J. Amer. Chem. Soc. 103, 1287–1289.

    Google Scholar 

  • Barmann, H.: 1980, ‘Koch Reactions’, in J. Falbe (ed.), New Syntheses with Carbon Monoxide, (Springer-Verlag, Berlin), pp. 372–413.

    Google Scholar 

  • Berndt, M. E. and Seyfried, W. E., Jr.: 1997, Effect of olivine alteration and dissolution kinetics on the redox state of carbon and sulfur in the oceanic crust. AGU 1997 Fall Meeting, EOS 78(46), F773.

    Google Scholar 

  • Berndt, M. E., Allen, D.W. and Seyfried, W. E., Jr.: 1996, Reduction of CO2 during serpentinization of olivine at 300 ∘C and 500 bar. Geology 24, 351–354.

    Google Scholar 

  • Bray, E. E. and Evans, E. D.: 1961, Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 22, 2–15.

    Google Scholar 

  • Charlou, J. and Donval, J.: 1993, Hydrothermal methane venting between 12∘N and 6∘N along the Mid-Atlantic Ridge. J. Geophys. Res. 98, 9625–9642.

    Google Scholar 

  • Corliss, J. B., Baross, J. A. and Hoffman, S. E.: 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol. Acta, No. SP, 59–69.

  • Crossey, L. J.: 1991, Thermal degradation of aqueous oxalate species. Geochim. Cosmochim. Acta 55, 1515–1527.

    Google Scholar 

  • Elliot, R. C., Hallen, R. T. and Sealock, L. J., Jr.: 1983, Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis. Ind. Eng. Chem. Prod. Res. Dev. 22, 431–435.

    Google Scholar 

  • Ferris, J. P.: 1992, ‘Chemical Markers of Prebiotic Chemistry in Hydrothermal Systems’, in Holm, N. G. (ed.), Marine Hydrothermal Systems and the Origin of Life, Origins Life and Evol. Biosphere 22, 109–134.

  • Fischer, F.: 1935, Die Synthese der Treibstoffe (Kogasin) und Schmieröle aus Kohlenoxyd und Wasserstoff bei gewöhnlichem Druck. Brennstoff-Chemie 16, 1–11.

    Google Scholar 

  • Gelpi, E., Han, L., Nooner, D. W. and Oró, J.: 1970, Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. Geochim. Cosmochim. Acta 34, 965–979.

    Google Scholar 

  • Giggenbach, W. F.: 1997, Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heatflow sedimentary basins. Geochim. Cosmochim. Acta 61, 3763–3785.

    Google Scholar 

  • Gold, T. and Soter, S.: 1982, Abiogenic methane and the origin of petroleum. Energy Exploration and Exploitation 1, 89–104.

    Google Scholar 

  • Holm, N. G. (ed.): 1992, Marine Hydrothermal Systems and the Origin of Life (Kluwer Academic Publishers, Dordrecht, The Netherlands).

    Google Scholar 

  • Horvath, I. T. and Siskin, M.: 1991, Direct evidence for formate ion formation during the reaction of coals with carbon monoxide and water. Energy and Fuels 5, 932–933.

    Google Scholar 

  • Hunt, J. M.: 1996, Petroleum Geochemistry and Geology, 2nd ed., W. H. Freeman and Co., New York, 743 pp.

    Google Scholar 

  • Koch, H. and Gilfert, W.: 1955, Part of the work of H. Koch in: Carbonsäure Synthese aus Olefinen, Kohlenoxyd und Wasser, Brennstoff-Chemie 36, 321–352.

    Google Scholar 

  • Kugler, E. L. and Steffgen, F. W. (eds.): 1979, Hydrocarbon Synthesis from Carbon Monoxide and Hydrogen, American Chemical Society, Advances in Chemistry Series 178, Washington, D.C.

    Google Scholar 

  • Leif, R. N. and Simoneit, B. R. T.: 1998, The role of alkenes produced during the hydrous pyrolysis of a shale. Geochim. Cosmochim. Acta, submitted.

  • Leif, R. N. and Simoneit, B. R. T.: 1995a, Confined-pyrolysis as an experimental method for hydrothermal organic synthesis. Origins Life and Evol. Biosphere 25, 417–429.

    Google Scholar 

  • Leif, R. N. and Simoneit, B. R. T.: 1995b, Ketones in hydrothermal petroleums and sediment extracts from Guaymas Basin, Gulf of California. Org. Geochem. 23, 889–904.

    Google Scholar 

  • Maitlis, P.M., Long, H. C., Quyoum, R., Turner, M. L. and Wang, Z.: 1996, Heterogeneous catalysis of C-C bond formation: black art of organometallic science? Chem. Comm., 1–8.

  • Martens, C. S.: 1990, Generation of short chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. Appl. Geochem. 5, 71–76.

    Google Scholar 

  • Mathez, E. A.: 1987, Carbonaceous matter in mantle xenoliths: Composition and relevance to the isotopes. Geochim. Cosmochim. Acta 51, 2339–2347.

    Google Scholar 

  • Miller, S. L. and Bada, J. L.: 1988, Submarine hotsprings and the origin of life. Nature 334, 609–611.

    Google Scholar 

  • Morgan, G. B. IV, Chou, I.-Ming and Pasteris, J. D.: 1992, Speciation in experimental C-O-H fluids produced by the thermal dissociation of oxalic acid dihydrate. Geochim. Cosmochim Acta 56, 281–294.

    Google Scholar 

  • Nooner, D. W. and Oró, J.: 1979, ‘Synthesis of Fatty Acids by a Closed System Fischer-Tropsch Process’, in E. L. Kugler and F. W. Steffgen (eds.), Hydrocarbon Synthesis from Carbon Monoxide and Hydrogen, Amer. Chem. Soc., Adv. Chem Ser. 178, pp. 159–171.

  • Palmer, D. A., Weselowski, D. J. and Bell, J. L. S.: 1993, EMF measurements of oxalic and formic acid decomposition kinetics and interaction of acetate with aluminum (III) to high temperatures. EOS 74(16), 327–328.

    Google Scholar 

  • Salvi, S. and Williams-Jones, A. E.: 1997, Fischer-Tropsch synthesis of hydrocarbons during subsolidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada. Geochim. Cosmochim. Acta 61, 83–99.

    Google Scholar 

  • Satterfield, C. N. and Huff, G. A., Jr.: 1982, Carbon number distribution of Fischer-Tropsch products formed on an iron catalyst in a slurry reactor. J. of Catalysis 73, 187–197.

    Google Scholar 

  • Satterfield, C. N., Hanlon, R. T., Tung, S. E., Zou, Z.-M. and Papaefthymiou, G. C.: 1986a, Initial behavior of a reduced fused-magnetite catalyst in the Fischer-Tropsch Synthesis. Ind. Eng. Chem. Prod. Res. Dev. 25, 401–407.

    Google Scholar 

  • Satterfield, C. N., Hanlon, R. T., Tung, S. E., Zou, Z.-M. and Papaefthymiou, G. C.: 1986b, Effect of water on the iron-catalyzed Fischer-Tropsch synthesis. Ind. Eng. Chem. Prod. Res. Dev. 25, 407–414.

    Google Scholar 

  • Sherwood Lollar, B., Frape, S. K., Weise, S. M., Fritz, P., Macko, S. A. and Welhan, J. A.: 1993, Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097.

    Google Scholar 

  • Shock, E.: 1990, Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life and Evol. Biosphere 20, 331–367.

    Google Scholar 

  • Simoneit, B. R. T.: 1995, Evidence for organic synthesis in high temperature aqueous media-facts and prognosis. Orig. Life and Evol. Biosphere 25, 119–140.

    Google Scholar 

  • Simoneit, B. R. T. (ed).: 1990, Organic matter in hydrothermal systems – maturation, migration and biogeochemistry. Appl. Geochem. 5, 1–248.

    Google Scholar 

  • Simoneit, B. R. T., Kawka, O. E. and Brault, M.: 1988, Origin of gases and condensates in the Guaymas Basin hydrothermal system (Gulf of California). Chem. Geol. 71, 169–182.

    Google Scholar 

  • Stepanov, A. G., Luzgin, M. V., Romannikov, V. N. and Zamaraev, K. I.: 1995, NMR observation of Koch reaction in zeolite H-ZSM-5 under mild conditions. J. Amer. Chem. Soc. 117, 3615–3616.

    Google Scholar 

  • Studier, M. H., Hayatsu, R. and Anders, E.: 1968, Origin of organic matter in the early solar system-I. Hydrocarbons. Geochim. Cosmochim. Acta 32, 151–173.

    Google Scholar 

  • Sugisaki, R. and Mimura, K.: 1994, Mantle hydrocarbons: Abiotic or biotic? Geochim. Cosmochim. Acta 58, 2527–2542.

    Google Scholar 

  • Szatmari, P.: 1989, Petroleum formation by Fischer-Tropsch synthesis in plate tectonics. Amer. Assoc. Petrol. Geol. Bull. 73, 989–998.

    Google Scholar 

  • Tingle, T. N. and Hochella, M. F., Jr.: 1993, Formation of reduced carbonaceous matter in basalts and xenoliths: Reaction of C-O-H gases on olivine crack surfaces. Geochim. Cosmochim. Acta 57, 3245–3249.

    Google Scholar 

  • Tissot, B. P. and Welte, D. H.: 1984, Petroleum Formation and Occurrence, Springer-Verlag, Berlin, 699 pp.

    Google Scholar 

  • Welhan, J. A.: 1988, Origins of methane in hydrothermal systems. Chem. Geol. 71, 183–198.

    Google Scholar 

  • Welhan, J. A. and Lupton, J. E.: 1987, Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: thermogenic versus abiogenic origin. Bull. Amer. Assoc. Petrol. Geol. 71, 215–223.

    Google Scholar 

  • Weres, O., Newton, A. S. and Tsao, L.: 1988, Hydrous pyrolysis of alkanes, alkenes, alcohols and ethers. Org. Geochem. 12, 433–444.

    Google Scholar 

  • Yoshino, D., Hayatsu, R. and Anders, E.: 1971, Origin of organic matter in early solar system-III. Amino acids: catalytic synthesis. Geochim. Cosmochim. Acta 35, 927–938.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McCollom, T.M., Ritter, G. & Simoneit, B.R.T. Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions. Orig Life Evol Biosph 29, 153–166 (1999). https://doi.org/10.1023/A:1006592502746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006592502746

Keywords

  • Carbon Source
  • Formic Acid
  • Oxalic Acid
  • Lipid Class
  • Hydrothermal System