Skip to main content
Log in

Pore Network Analysis of Resistivity Index for Water-Wet Porous Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.

Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, W. G.: 1986a, Wettability literature survey-Part 1: Rock/oil/brine interactions and the effects of core handling on wettability, J. Pet. Tech., October, 1125-1144.

  2. Anderson, W. G.: 1986b, Wettability literature survey-Part 2: Wettability measurement, J. Pet. Tech., November, 1246-1262.

  3. Anderson, W. G.: 1986c, Wettability literature survey-Part 3: The effects of wettability on the electrical properties of porous media, J. Pet. Tech., December, 1371-1378.

  4. Archie, G. E.: 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146, 54-62.

    Google Scholar 

  5. Bard, Y.: 1974, Non-linear Parameter Estimation, Academic Press, New York.

    Google Scholar 

  6. Benson, A. K., Payne, K. L. and Stubben, M. A.: 1997, Mapping groundwater contamination using dc resistivity and VLF geophysical methods-a case study, Geophysics 62, 80-86.

    Google Scholar 

  7. Blunt, M., King, M. J. and Scher, H.: 1992, Simulation and theory of two-phase flow in porous media, Phys. Rev. A 46, 7680-7699.

    Google Scholar 

  8. Broadbent, S. R. and Hammersley, J. M.: 1957, Percolation processes: I. Crystals and mazes, Proc. Camb. Phil. Soc. 53, 629-641.

    Google Scholar 

  9. Chandler, R., Koplik, J., Lerman, K. and Willemsen, J. F.: 1982, Capillary displacement and percolation in porous media, J. Fluid Mech. 119, 249-267.

    Google Scholar 

  10. Chatzis, I. and Dullien, F. A. L.: 1977, Modelling pore structure by 2-D and 3-D networks with application to sandstones, J. Can. Pet. Tech. 16, 97-108.

    Google Scholar 

  11. Constantinides, G. N. and Payatakes, A. C.: 1996, Network simulation of steady-state twophase flow in consolidated porous media, AIChE J. 42, 369-382.

    Google Scholar 

  12. deWaal, J. A., Smits, R. M. M., de Graaf, J. D., and Schipper, B. A.: 1991, Measurement and evaluation of resistivity index curves, Log Analyst 32, 583-595.

    Google Scholar 

  13. Dias, M. M. and Payatakes, A. C.: 1986, Network models for two-phase flow in porous media: Part 1. Immiscible microdisplacement of non-wetting fluids, J. Fluid Mech. 164, 305-336.

    Google Scholar 

  14. Diaz, C. E., Chatzis, I. and Dullien, F. A. L.: 1987, Simulation of capillary pressure curves using bond-correlated site percolation on a simple cubic network, Transport in Porous Media 2, 215-240.

    Google Scholar 

  15. Dicker, A. I. M. and Bemelans, W. A.: 1984, Models for simulating the electrical resistance in porous media, 25th SPWLA Ann. Logg. Symp., New Orleans.

  16. Diederix, K. M.: 1982, Anomalous relationships between resistivity index and water saturations in the Rotliegend sandstone (The Netherlands), 23rd SPWLA Ann. Logg. Symp., Corpus Christi, Texas.

    Google Scholar 

  17. Dullien, F. A. L. and Dhawan, G. K.: 1974, Characterization of pore structure by a combination of quantitative photomicrography and mercury porosimetry, J. Colloid Interface Sci. 47, 337-349.

    Google Scholar 

  18. Dullien, F. A. L., Lai, Y. and MacDonald, I. F.: 1986, Hydraulic continuity of residual wetting phase in porous media, J. Colloid Interface Sci. 109, 201-218.

    Google Scholar 

  19. Dullien, F. A. L., Zarconne, C., MacDonald, I. F., Collins, A. and Bochard, D. E.: 1989, The effects of surface roughness on the capillary pressure curves and the heights of capillary rise in glass beadpacks, J. Colloid Interface Sci. 127, 362-372.

    Google Scholar 

  20. Dullien, F. A. L.: 1992, Porous Media: Fluid Transport and Pore Structure, Academic Press, San Diego, California.

    Google Scholar 

  21. Frisch, H. L. and Hammersley, J. M.: 1963, Percolation processes and related topics, J. Soc. Ind. Appl. Math. 11, 894-918.

    Google Scholar 

  22. Givens, W. W.: 1987, A conductive rock matrix model for the analysis of low-contrast resistivity formations, Log Analyst 28, 138-151.

    Google Scholar 

  23. Hansen, J. P. and Skjeltorp, A. T.: 1988, Fractal pore space and rock permeability implications, Phys. Rev. B 38, 2635-2638.

    Google Scholar 

  24. Heiba, A. A., Davis, H. T. and Scriven, L. E.: 1983, Effect of wettability on two-phase relative permeabilities and capillary pressures, Paper SPE 12172, 58th Ann. Tech. Conf. SPE, San Francisco, California.

  25. Heiba, A. A., Sahimi, M., Davis, H.T. and Scriven, L. E.: 1992, Percolation theory of two-phase relative permeability, SPERE 7, 123-132.

    Google Scholar 

  26. Herrick, D. C.: 1988, Conductivity models, pore geometry and conduction mechanisms, 29th SPWLA Ann. Logg. Symp., San Antonio, Texas.

  27. Herrick, D. C. and Kennedy, W. D.: 1993, Electrical efficiency: a pore geometric model for the electrical properties of rocks, 34th SPWLA Ann. Logg. Symp., Calgary, Alberta.

  28. Ioannides, M. A. and Chatzis, I.: 1993, Network modelling of pore structure and transport properties of porous media, Chem. Engng. Sci. 48, 951-972.

    Google Scholar 

  29. Ioannides, M. A., Chatzis, I. and Sudicky, E. A.: 1993, The effect of spatial correlations on the accessibility characteristics of three-dimensional cubic networks, Water Resour. Res. 29, 1777-1785.

    Google Scholar 

  30. Jerauld, G. R. and Salter, S. J.: 1990, The effect of pore structure on hysteressis in relative permeability and capillary pressure: Pore-level modeling, Transport in Porous Media 5, 103-151.

    Google Scholar 

  31. Kirkpatrick, S.: 1973, Percolation and conduction, Rev. Mod. Phys. 45, 574-588.

    Google Scholar 

  32. Krohn, C. E. and Thompson, A. H.: 1986, Fractal sandstone pores: automated measurements using scanning electron microscope images, Phys. Rev. B 33, 6366-6374.

    Google Scholar 

  33. Krohn, C. E.: 1988a, Sandstone fractal and Euclidean pore volume distributions, J. Geophys. Res. 93(B4), 3286-3296.

    Google Scholar 

  34. Krohn, C. E.: 1988b, Fractal measurements of sandstones, shales and carbonates, J. Geophys. xRes. 93(B4), 3297-3305.

    Google Scholar 

  35. Larson, R. G., Scriven, L. E. and Davis, H. T.: 1977, Percolation theory of residual phases in porous media, Nature 268, 409-413.

    Google Scholar 

  36. Lenormand, R. and Bories, S.: 1980, Description d'un mécanisme de connexion de liaisons destinè àl'étude du drainage avec piegeage en milieu poreux, C.R. Acad. Sci. Paris B 291, 279-293.

    Google Scholar 

  37. Levine, S. and Cuthiell, D. L.: 1986, Relative permeabilities in two-phase flow through porous media: an application of effective medium theory, J. Can. Pet. Tech. 25, 74-84.

    Google Scholar 

  38. Mandelbrot, B. B.: 1983, The Fractal Geometry of Nature, Freeman, San Francisco.

    Google Scholar 

  39. Melrose, J. C.: 1990, Valid capillary pressure data at low wetting-phase saturations, SPERE, February, 95-99.

  40. Morrow, N. R.: 1976, Capillary pressure correlations for uniformly wetted porous media, J. Can. Pet. Tech. 15, 49-69.

    Google Scholar 

  41. Morrow, N. R.: 1990, Wettability and its effects on oil recovery, J. Pet. Tech., December, 1476-1484.

  42. Morrow, N. R. and Melrose, J. C.: 1991, Application of capillary pressure measurements to the determination of connate water saturation, In: N. R. Morrow (ed.), Interfacial Phenomena in Petroleum Recovery, Surfactant Science Series 36, Marcel Dekker.

  43. Mualem, L. and Friedman, S. P.: 1991, Theoretical prediction of electrical conductivity in saturated and unsaturated soil, Water Resour. Res. 27, 2771-2777.

    Google Scholar 

  44. Pape, H., Riepe, L. and Schopper, J. R.: 1982, A pigeon hole model for relating permeability to specific surface, Log Analyst 25, 5-13.

    Google Scholar 

  45. Payatakes, A. C. and Dias, M. M.: 1984, Immiscible microdisplacement and ganglion dynamics in porous media, Rev. Chem. Engng. 2, 85-174.

    Google Scholar 

  46. Rasmus, J. C.: 1987, Asummary of the effects of various pore geometries and their wettabilities on measured and in situ values of cementation and saturation exponents, Log Analyst 28, 152-164.

    Google Scholar 

  47. Sahimi, M.: 1993, Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata and simulated annealing, Rev. Mod. Phys. 65, 1393-1534.

    Google Scholar 

  48. Sharma, M. M., Garough, A. and Dunlap, H. F.: 1991, Effects of wettability, pore geometry and stress on electrical conduction in fluid saturated rocks, Log Analyst 32, 511-526.

    Google Scholar 

  49. Sprunt, E. S., Hensel, W. M. Jr., York, C. E. and Honarpour, M. M.: 1988, Compilation of electrical resistivity measurements performed by twenty-five laboratories, Log Analyst 29, 13-29.

    Google Scholar 

  50. Stauffer, D. and Aharony, A.: 1991, Introduction to Percolation Theory, Taylor & Francis, London.

    Google Scholar 

  51. Suman, R. J. and Knight, R. J.: 1997, Effects of pore structure and wettability on the electrical resistivity of partially saturated rocks-a network study, Geophysics 62, 1151-1162.

    Google Scholar 

  52. Swanson, B. F.: 1985, Microporosity in reservoir rocks. Its measurement and influence on electrical resistivity, Log Analyst 26, 42-52.

    Google Scholar 

  53. Toledo, P. G., Novy, R. A., Davis, H. T. and Scriven, L. E.: 1990, Hydraulic conductivity of porous media at low water content, Soil Sci. Soc. Am. J. 54, 673-679.

    Google Scholar 

  54. Toledo, P. G., Novy, R. A., Davis, H. T. and Scriven, L. E.: 1994, Capillary pressure, water relative permeability, electrical conductivity and capillary dispersion coefficient of fractal porous media at low wetting phase saturation, SPE Advanc.Tech. Ser. 2, 136-141.

    Google Scholar 

  55. Tsakiroglou, C. D. and Payatakes, A. C.: 1991, Effects of pore size correlations on mercury porosimetry curves, J. Colloid Interface Sci. 146, 479-494.

    Google Scholar 

  56. Tsakiroglou, C. D. and Payatakes, A. C.: 1993, Pore-wall roughness as a fractal surface and theoretical simulation of mercury intrusion/retraction in porous media, J. Colloid Interface Sci. 159, 287-301.

    Google Scholar 

  57. Tsakiroglou, C. D. and Payatakes, A. C.: 1997, Analysis of the topological and geometrical characteristics of the pore space of permeable solids using serial tomography, mercury porosimetry and theoretical simulation, In: B. McEnaney et al. (eds), Proc. Symp. COPS-IV, Bath, 15-18 Sept. 1996, Royal Society of Chemistry, London, pp. 205-213.

    Google Scholar 

  58. Tsakiroglou, C. D. and Fleury, M.: 1998, Resistivity index of fractional wettability porous media, J. Petrol. Sci. Engng. (in press).

  59. Vizika, O. and Lenormand, R.: 1991, Flow by film of the wetting phase in a porous medium and its role on the gravity drainage process, IEA 12th Int. Workshop and Symp., Bath, United Kingdom.

    Google Scholar 

  60. Wang, Y. and Sharma, M. M.: 1988, A network model for the resistivity behavior of partially saturated rocks, 29th SPWLA Ann. Logg. Sympos., San Antonio, Texas.

  61. Wardlaw, N. C., Li, Y. and Forbes, D.: 1987, Pore-throat size correlation from capillary pressure curves, Transport in Porous Media 2, 597-614.

    Google Scholar 

  62. Waxman, W. H. and Smits, L. J. M.: 1968, Electrical conductivities in oil-bearing shaly sands, Trans. AIME 243, 107-122.

    Google Scholar 

  63. Wilkinson, D.: 1986, Percolation effects in immiscible displacement, Phys. Rev. A 34, 1380-1391.

    Google Scholar 

  64. Worthington, P. F., Pallat, N. and Toussait-Jackson, J. E.: 1985, Influence of microporosity upon the evaluation of hydrocarbon saturation, paper SPE 14296, 60th Ann. Tech. Conf. SPE, Las Vegas, Nevada

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos D. Tsakiroglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsakiroglou, C.D., Fleury, M. Pore Network Analysis of Resistivity Index for Water-Wet Porous Media. Transport in Porous Media 35, 89–128 (1999). https://doi.org/10.1023/A:1006586409963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006586409963

Navigation