Skip to main content
Log in

Some Results on Contact Metric Manifolds

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

If the sectional curvatures of plane sections containing the characteristic vector field of a contact metric manifold M are non-vanishing, then we prove that a second order parallel tensor on M is a constant multiple of the associated metric tensor. Next, we prove for a contact metric manifold of dimension greater than 3 and whose Ricci operator commutes with the fundamental collineation that, if its Weyl conformal tensor is harmonic, then it is Einstein. We also prove that, if the Lie derivative of the fundamental collineation along the characteristic vector field on a contact metric 3-manifold M satisfies a cyclic condition, then M is either Sasakian or locally isometric to certain canonical Lie-groups with a left invariant metric. Next, we prove that if a three-dimensional Sasakian manifold admits a non-Killing projective vector field, it is of constant curvature 1. Finally, we prove that a conformally recurrent Sasakian manifold is locally isometric to a unit sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, A.: Einstein Manifolds, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  2. Blair: D. E.: Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  3. Blair, D. E. and Chen, H.: A classification of 3-dimensional contact metric manifolds with = φQ, II, Bull. Inst. Math. Acad. Sinica 20 (1992) 379–383.

    Google Scholar 

  4. Blair, D. E. and Goldberg, S. I.: Topology of almost contact manifolds, J. Diff. Geom. 1 (1967), 347–354.

    Google Scholar 

  5. Blair, D. E. and Koufogiorgos, T.: When is the tangent sphere bundle conformally flat?, J. Geom. 49 (1994), 55–66.

    Google Scholar 

  6. Blair, D. E., Koufogiorgos, T. and Sharma, R.: A classification of 3-dimensional contact metric manifolds with = φQ, Kodai Math. J. 13 (1990), 391–401.

    Google Scholar 

  7. Bourguignon, J. P.: Harmonic Curvature for Gravitational and Yang-Mills Fields, Lecture Notes in Mathematics, Vol. 949, Springer-Verlag, Berlin, 1982.

    Google Scholar 

  8. Koufogiorgos, T.: On a class of contact Riemannian manifolds, Results in Maths. 27 (1995), 51–62.

    Google Scholar 

  9. Levy, H.: Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Maths. 27 (1926), 91–98.

    Google Scholar 

  10. Milnor, J. L.: Curvature of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293–329.

    Google Scholar 

  11. Okumura, M.: Some remarks on space with certain contact structures, Tohoku Math. J. 14 (1962), 135–145.

    Google Scholar 

  12. Okumura, M.: On infinitesimal conformal and projective transformations of normal contact spaces, Tohoku Math. J. 14 (1962), 398–412.

    Google Scholar 

  13. Palais, R. S.: A global formulation of the theory of transformation groups, Memoirs of A.M.S. 22 (1957), 1–123.

    Google Scholar 

  14. Sharma, R.: Second order parallel tensor in real and complex space forms, Internat. J. Math. & Math. Sci. 12 (1989), 787–790.

    Google Scholar 

  15. Sharma, R.: Proper conformal symmetries of spacetimes with divergence-free Weyl conformal tensor, J. Math. Phys. 34 (1993), 3582–3587.

    Google Scholar 

  16. Sharma, R.: On the curvature of contact metric manifolds, J. Geom. 53 (1995), 179–190.

    Google Scholar 

  17. Tanno, S.: Locally symmetric K-contact Riemannian manifolds, Proc. Japan. Acad. 43 (1967), 581–583.

    Google Scholar 

  18. Tanno, S.: Ricci curvature of contact Riemannian manifolds, Tohoku Math. J. 40 (1988), 441–448.

    Google Scholar 

  19. Yano, K.: Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.

    Google Scholar 

  20. Yano, K. and Nagano, T.: On geodesic vector fields in a compact orientable Riemannian space, Comm. Math. Helv. 35 (1991), 55–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Sharma, R. Some Results on Contact Metric Manifolds. Annals of Global Analysis and Geometry 15, 497–507 (1997). https://doi.org/10.1023/A:1006583608150

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006583608150

Navigation